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Abstract: In this paper we present a cardiovascular diseases prediction which is referred to as heart diseases. A detail 

review and application of genetic algorithms in healthcare systems including machine learning algorithms were evaluated. 

Areas in health systems reviewed and, in this research, includes radiology, oncology, cardiology, obstetrics and 

gynaecology, surgery, and infectious diseases. We conducted a healthcare management with recent reviewed papers and the 

application of GA in various health systems using its key parameter evaluation metrics; genetic operator, mutation operators, 

real coded GA, pareto-based multi-objective genetic algorithm and parallel genetic algorithms. The authors also proposed 

an architecture of a hybrid genetic algorithm and machine learning techniques implemented in MATLAB setting. One of the 

leading causes of morbidity and mortality in the global population, cardiovascular disease is characterized by restricted or 

blocked blood vessels that can cause heart attacks, angina, strokes, and other heart failures such muscle, valve, or rhythm 

problems. According to our analysis and findings, between 85 and 89 percent of people over the age of 40 were 

significantly affected by cardiovascular diseases. This result is crucial in light of the 2014–2016 Ebola outbreak in West 

Africa and the ongoing COVID-19 pandemic, both of which disproportionately affected the elderly population. Our 

findings also suggest that the algorithm gets more complicated and performs better the higher the generation. To forecast 

the results from the available data, however, and to compare the probability computation with the dataset for cardiovascular 

disorders, GA and ML techniques are helpful. 

Keywords: Cardiovascular Diseases, Genetic Algorithms, Machine Learning Algorithms, Genetic Programming, 

Computational Intelligence 

 

1. Introduction 

Description and background information 

Parkinson Disease (PD), a central nervous system 

degenerative illness, is an area of the mid-brain that develops 

as a result of the loss of dopamine-producing cells in the 

substantia nigra [1]. Over the age of 55, Parkinson's disease 

affects about 1% of the global population, according to 

Betarbet et al. [1]. 

In severe stages of the illness, dementia and dysautonomia 

are frequently present, along with nonmotor symptoms. 

When two or more of the hallmarks of Parkinson's disease 

are present, such as rest tremor, bradykinesia, or stiffness [2]. 

Functional neuroimaging holds the possibility of better 

diagnosis and facilitated assessment in early disease. 

Parkinson's disease primarily manifests as bradykinesia, 
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tremor, rigidity, and postural instability. Doctors can make 

the diagnosis of Parkinson's disease when all of these 

symptoms are present. Dysphonia is one of the most difficult 

symptoms of Parkinson's disease, according to many patients 

and their families. Nearly 90% of those who have Parkinson's 

disease experience speech or vocal problems. Many different 

vocal tests can be used to identify the signs of dysphonic 

exaggerated vocal tremor, which include breathiness, reduced 

loudness, roughness, and diminished energy in the higher 

harmonic spectrum [3]. Voice data is more suited to the 

building of an automatic Parkinson's disease diagnosis 

system due to the most prevalent or common symptoms. 

Numerous research was carried out to identify the speech 

signals, which are then captured and recognized using 

various techniques based on certain characteristics of the 

signals [4-6]. Parkinson's disease is identified in individuals 

using a classifier based on specific signal properties. The 

classifier is necessary for the automatic diagnosis system. 

Despite the fact that there are a lot of unrestricted variances, 

the highest precision is attainable. 

The findings make it quite evident that computers have 

transformed daily life. including fields like engineering, 

archaeology, astronomy, and many others. The foundation of 

imaging, diagnostic, monitoring, and therapeutic devices, 

which have made significant contributions to medicine, is 

made up of electronic chips and computers. Devices are 

maintained and controlled by software applications and 

consequently dependent on algorithms. These devices are 

made up of numerous different physical components. An 

algorithm is a well-described set of rules and instructions that 

define or describe a series of actions or functions. 

Metaheuristic techniques, according to Osman et al. [7], are 

algorithms that can more quickly solve complex problems or, 

alternatively, provide an approximate answer when traditional 

techniques are unable to locate an accurate one. Researchers 

have created a large number of metaheuristic algorithms to 

optimize existing solutions that are motivated by real biological 

patterns and behaviour. These algorithms include: the ant colony 

algorithm, which was inspired by ant behaviour [8], the artificial 

bee colony algorithm, which was inspired by bee behaviour [9], 

the Grey Wolf optimizer, which was inspired by the behaviour 

of grey wolves [10, 11], the simulated annealing algorithm, 

which was inspired by the dynamics of river formation [12], the 

artificial immune system algorithm, which was inspired by the 

functions of the immune system [13], and the genetic algorithm, 

which was inspired by genetics. 

Metaheuristic approaches for decision making have been 

swiftly adopted in different fields of study to solve complex 

problems or discover the best course of action. It is hoped 

that when artificial intelligence and machine learning are 

fully utilized, these algorithms will solve a lot of problems in 

various fields, especially the expectation for full 

implementation of q analytics. The power of these potent 

algorithms for offering solutions to the untold complex issues, 

especially physicians encounter every day, which has not 

been fully exploited in medicine. 

We introduce the combined genetic algorithm and machine 

learning techniques in this study to help anticipate problems 

that may arise in the healthcare industry. There is also a case 

study for the application of Darwinian theory to the 

evaluation of the proposed algorithm for successive 

generations. Some of its applications in medicine are 

reviewed by the metaheuristic and machine learning. 

Significance of the research 

The main objective of the research is to provide an 

intuitive understanding of the computational intelligence and 

application of the GA in healthcare systems, enhancement 

through existing algorithms and optimization techniques, 

predictive pattern of chromosomes or generations over 

another and determine which generation performance can 

adequately adapt based on its attributes. The research will 

examine the performance of the parameter set such as 

selection, operators to determine its learning rates over each 

set of generation base on the dataset supplied into the training 

model of the GA. 

The GA has been implemented in various healthcare 

systems or healthcare domain including radiology- use 

magnetic resonance imaging (MRI), compute tomography 

scan (CT), and ultrasound; oncology-for early cancer 

detection which made possible by the screening tests when 

combined with appropriate treatment and increase patient 

survival rates; cardiology-different areas of cardiovascular 

medicine have used Gas. The majority of strokes and 

myocardial infarctions are characterized by atherosclerotic 

plaques. Medical professionals would be better able to 

identify and map unstable or fragile plaques if the 

mechanical properties of the plaque, such as its elasticity, 

were known; obstetrics and gynecology- predicting fetal 

weight before to delivery might lessen the risks connected to 

low-birth-weight babies; pediatrics- the fetal heart rate and 

uterine contractions can be measured using the inexpensive, 

non-invasive cardiotocography method to determine the 

health of the fetus; and surgery- a GA-based ANN (GANN) 

was created to predict the outcomes following surgery for 

patients with non-small cell lung cancer due to the predictive 

potential of ANNs (NSCLC). We presented a detailed 

literature for the applications of GA in various healthcare 

domain. 

Concepts of Genetic Algorithms 

In comparison to previous algorithms based on 

metaheuristic techniques, GA is a metaheuristic technique 

influenced by the Darwinian laws of genetics, guaranteeing the 

discovery of useful answers to challenging issues. In this 

method, certain random solutions, which we named people, are 

formed. Each individual contains a large number of features, 

which we refer to as chromosomes. Crossover and mutations 

in chromosomes (features), inspired by the rule of genetics, 

result in a second generation of people with more varied traits. 
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Figure 1. Crossover, one part of a chromosome is interchange by another fragment another chromosome and II: Mutations one or more datasets on a 

chromosome are converted to various ones. 

Crossover and mutation are the two main methods for 

achieving individual diversity. Two chromosomes are chosen 

for crossing. The two chromosomes are then exchanged after 

choosing crossover locations along each chromosome 

(features). Figure 1 depicts a typical scenario of the 

phenomenon. The method of persuasion used to persuade a 

diverse group of people is known as a candidate solution. 

The diagram (a) shows that during crossover, one 

chromosome feature is swapped out for another segment 

from a different chromosome, and the diagram (b) shows that 

during mutations, one or more features on a chromosome are 

changed into different ones. 

The more beneficial or fitter chromosomes (features) that 

new individuals produced as a result of these modifications 

or changes have, the more probable it is that they will be 

selected for breeding the next generation and the greater the 

likelihood that the succeeding generation will be reproduced. 

The mutation then creates novel configurations by making 

random alterations to several chromosomes [14]. Two 

examples of the basic mutation strategies are shown in Figure 

1. There are various methods of selection; therefore, the goal 

of each is to map out the fitness values to individuals based 

on a fitness function. The genetic changes in chromosomes or 

traits of the selected fittest offspring will happen through 

crossover and mutations to form another generation. Due to 

the fact that the iterative process will continue until the fittest 

person is created or the maximum number of generations is 

reached, an optimal solution would need to be established [15, 

16]. Additionally, GA is crucial for predicting specific 

parameters for a given generation and identifying the variable 

that will perform at the highest level, particularly when using 

a combinatory algorithm of GA and ML to predict diseases in 

the healthcare sector. 

Determine a given dataset and with variable settings in the 

GA for each generation and compare their performance 

matrices are the main contributions of this paper. When 

compared to other optimization techniques, GA is 

noteworthy since it is based on derivatives. In the first place, 

Gas searches a population of points in the solution space in 

each iteration, whereas traditional derivative-based 

techniques search a population using probabilistic transition 

rules and random number generators, and on the other hand, 

derivative-based algorithms use deterministic transition rules 

for choosing the nest point in the other or arrangement. 

Additionally, by forecasting how successive generations 

would behave in terms of how well they perform and how 
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accurately their data can be used to solve biological and 

business-related issues. This makes it easier to create 

research-based GA problems, particularly during pandemic 

or COVID-19 crises. 

Genetic algorithms are designed to solve problems through an 

evolutionary process [17]. An individual or set of solutions 

serves as the starting point for a genetic algorithm. A population 

is the collective of solutions. Each population is a solution set, 

and new solutions are chosen based on fitness values. 

Furthermore, iteration occurs again in genetic algorithms as long 

as the new population outperforms the previous one. For 

instance, a 20 generation computational recurrent is preferable to 

10 generation recurrent values. For the following population, it 

is more likely that an individual will be reproduced the higher its 

fitness values (functions) are. When certain requirements, such 

as the population's size, are met, the iterative process is said to 

be finished [18]. The genetic algorithm contains eight steps, 

which are highlighted below: 

Phase 1: There is established an n-person population 

random variable. These people are a good way to solve the 

issue. For experimental purposes, the value of n in this 

instance is 50. 

Phase 2: Each individual (x) is represented by the fitness 

function f(x), which is calculated in the population [19]. 

Every member of the population in our experimental 

examples and research is created at random. 

Phase 3: Two parents are chosen from the group of 

individuals that are chosen. These people have the 

population's highest fitness value. Then crossover operator 

realizes this parental individual. 

Phase 4: In this stage, a crossover probability estimation is 

used for the crossover operator that creates the new 

individuals. If the crossover is reversed, the person will be a 

perfect replica of their parents. 

Phase 5: In this phase, each new individual is created by 

mutating with a mutation chance. Utilizing any one or more 

bits from the individual generational computation, this 

mutation process is realized. 

Phase 6: The new individuals are obtained from the new 

population in this phase. 

Phase 7: In this situation, if specific circumstances are met 

and the end conditions are met, the GA is terminated. In this 

phase, the best answer within the present population is used. 

Phase 8: In this phase, it is returned to phase 2. Then, the 

new generated population is used for further algorithm. 

Research problem and GA Limitations 

A population of potential solutions to an optimization issue 

(also known as people, animals, organisms, or phenotypes) 

develops toward better answers in a genetic algorithm. 

Although other encodings are also possible, solutions are 

typically expressed in binary as strings of 0s and 1s. Each 

potential solution has a set of adjustable characteristics 

(referred to as its genotype or chromosomes). The population 

in each iteration of the evolution, which normally starts with 

a population of randomly created individuals, is referred to as 

a generation. Every generation, every member of the 

population has their fitness evaluated; the fitness is ordinarily 

the value of the objective function in the optimization issue 

under consideration. The fittest members of the existing 

population are stochastically chosen, their genomes are 

combined, and possibly random mutations are introduced to 

generate a new generation. The new generation of candidate 

solutions is used in the next algorithm iteration. When the 

population reaches a desired level of fitness or the maximum 

number of generations has been generated, the process 

normally ends [20]. 

An ordinary genetic algorithm requires the following: 

a) A genetic model of the problem domain and a fitness 

function to evaluate the solution domain. 

b) Typically, each possible response is represented as an 

array of bits. Fundamentally, using arrays of different 

types and structures works the same way. These genetic 

representations have the essential advantage that their 

parts are simple to align and allow for straightforward 

crossover operations due to their constant size. The use 

of representations with varying lengths is also an 

option, but crossover implementation is more 

challenging in this case. A combination of both linear 

chromosomes and trees are investigated in gene 

expression programming. While evolutionary 

programming studies representations as graphs, genetic 

programming explores representations as trees. 

c) After specifying the genetic representation and the 

fitness function, a GA starts a population of solutions 

and then refines it by repeatedly performing the 

mutation, crossover, inversion, and selection operations 

[21]. 

Initialization 

The population of potential solutions might range from a 

few hundred to thousands, depending on the nature of the 

problem. All feasible resolutions are possible because the 

starting population is frequently generated at random. 

Sometimes, the finest solutions may be "planted" in areas 

where they are most likely to be discovered. 

Selection 

Each subsequent generation chooses a portion of the 

present population to breed a new generation. Individual 

answers are picked using a fitness-based strategy, with fitter 

solutions (as defined by a fitness function) frequently having 

a larger chance of being chosen. Some selection techniques 

assess each solution's fitness and favor the best ones. Due of 

the first process' potential length, other methods only rate a 

representative sample of the population. The efficacy of the 

represented solution is evaluated by the fitness function, 

which is specified over the genetic representation. The 

problem always determines how the fitness function works. 

For instance, in the knapsack problem, the objective is to 

maximize the total value of the objects that can fit within a 

rucksack with a certain amount of capacity. A solution might 

be represented as an array of bits, where each bit would stand 

for a different object, and its value (0 or 1) would indicate 

whether the thing is in the knapsack. These depictions aren't 

always correct because sometimes an item's size exceeds the 

knapsack's storage capacity. If the representation is, then the 
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total value of everything in the knapsack constitutes the 

fitness of the solution. The fitness of the solution equals the 

total value of all the items in the knapsack if the 

representation is accurate; else, it is 0. 

A simulation or even interactive genetic algorithms may be 

used to estimate the fitness function value of a phenotypic 

when certain issues make it difficult or even impossible to 

define the fitness expression (for example, computational 

fluid dynamics is used to estimate the air resistance of a 

vehicle whose shape is encoded as the phenotype). 

The following phase is to generate a second-generation 

population of solutions from the initial population by 

combining the genetic operator’s crossover (also known as 

recombination) and mutation. 

Genetic operator 

Each new solution is produced by breeding a pair of 

“parent” solutions from the pool that was previously selected. 

A new solution is formed by using the crossover and 

mutation processes to create a “child” solution, which 

frequently has many characteristics in common with its 

“parents”. New parents are selected for every new child, and 

this process is continued until a new population of solutions 

is created that is the appropriate size. Even while 

reproduction methods based on the use of two parents are 

more “biology inspired,” some research shows that more than 

two “parents” create greater quality chromosomes. 

These processes finally result in a population of 

chromosomes that is distinct from the first generation in the 

succeeding generation. The average fitness of the population 

should have increased as a result of this procedure since only 

the best animals from the first generation are picked for 

breeding, along with a small percentage of less fit solutions. 

These less efficient methods ensure genetic diversity in the 

next generation of offspring by ensuring genetic variance 

within the parental genetic pool. 

It is worthwhile to adjust factors like the mutation 

probability, crossover probability, and population size in 

order to find the best settings for the issue class under 

consideration. A relatively low mutation rate may lead to 

genetic drift. If the recombination rate is too high, the genetic 

algorithm might not fully converge. In the absence of elitist 

selection, a high mutation rate could lead to the loss of useful 

solutions. A suitable population size guarantees that there is 

sufficient genetic diversity for the problem at hand, but if it is 

set to a value higher than necessary, it can waste 

computational resources. 

Heuristics 

In addition to the major operators listed above, other 

heuristics may be employed to improve or accelerate the 

calculation. The speciation heuristic penalizes crossover 

between candidate solutions that are too similar, which 

inhibits population homogeneity and delays convergence to a 

less perfect solution. 

Termination 

This generational procedure is repeated until a termination 

condition is satisfied. Typical grounds for termination 

include: 

a) Coming up with a solution that satisfies the essential 

criteria. 

b) A certain number of generations was reached. 

c) The computation-related time and financial resources 

have been consumed. 

d) The fitness of the top-ranked solution is getting close to 

or has passed the point at which further iterations are 

ineffective. 

e) Manual inspection and a combination of the 

aforementioned methods. 

Limitation of GA 

There are certain disadvantages of employing a genetic 

algorithm in comparison to other optimization algorithms: 

Why Repeated fitness function evaluation for complex 

tasks is typically the most prohibitive and limited part of 

artificial evolutionary algorithms. Finding the optimum 

solution to complex, multimodal, high-dimensional 

problems typically necessitate expensive fitness function 

evaluations. It may take many hours to several days of 

thorough simulation to evaluate a single function in 

practical problems like structural optimization problems. 

Standard optimization methods cannot resolve such issues. 

In this case, it could be necessary to forgo an exact 

assessment in favor of an approximative fitness 

measurement that is computationally efficient. It is 

obvious that one of the most promising approaches for 

successfully applying GA to challenging real-world 

problems is the combination of approximation models 

[22]. 

Genetic algorithms' complexity does not scale effectively. 

That is, in areas with a large number of elements prone to 

mutation, the size of the search space frequently increases 

exponentially. Because of this, using the method to solve 

problems like building a house, an airplane, or an engine is 

quite difficult. In order for evolutionary search to be able to 

solve such problems, they must first be reduced to their most 

elementary representation. As a result, we commonly observe 

evolutionary algorithms encoding plans for fan blades instead 

of engines, building forms instead of exact construction 

blueprints, and airfoils instead of whole aircraft designs. The 

second complexity challenge is figuring out how to keep 

elements that have evolved to be effective solutions from 

undergoing more harmful mutations, especially when their 

fitness assessment requires them to function well in 

conjunction with other elements [23]. 

Rather than the overall solution to the problem, GAs 

frequently converges towards local optimums or even 

arbitrary locations. This suggests that it lacks the “know-

how” to prioritize long-term fitness over immediate fitness. 

The likelihood of this relies on the form of the fitness 

landscape; certain challenges may make it easy to attain a 

global optimum, while others may make it easier for the 

function to find local optimal points. Despite the fact that the 

No Free Lunch theorem proves that no one solution exists for 

this issue, it can be resolved by using a different fitness 

function, accelerating mutation, or using selection techniques 

that protect a diverse population of solutions. 
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One common tactic for conserving diversity is the 

application of a “niche penalty,” which lowers the 

representation of any group of people with a high enough 

degree of similarity (niche radius) in future generations while 

preserving other (less similar) people. However, this strategy 

could not be successful depending on the nature of the 

problem. Another tactic is to simply replace a section of the 

population with randomly produced individuals when the 

majority of the population is too similar to one another [24]. 

Diversity is necessary for genetic algorithms (and genetic 

programming), as a population that is homogeneous does not 

offer innovative solutions when it is crossed. Because 

mutation is more frequently utilized than diversity, 

evolutionary programming and methodologies do not require 

it. 

Working with dynamic data sets can be difficult because 

genes begin to converge early on toward conclusions that 

may not hold true for subsequent data. It has been proposed 

that increasing genetic variety and avoiding early 

convergence can cure this. These techniques include either 

irregularly injecting whole new, randomly produced elements 

into the gene pool or raising the probability of mutation when 

the quality of the solution decreases (a process known as 

triggered hypermutation). Evolutionary programming and 

strategies can once again be used with the so-called "comma 

strategy," in which new parents are only selected from 

offspring and existing parents are not preserved. This might 

perform better on motion-related issues. 

One type of difficulty that generic algorithms (GAs) 

cannot effectively solve is decision issues since there is no 

mechanism to converge on a solution. A random search 

might yield a solution just as quickly in some circumstances. 

However, if the circumstances allow for a success/failure 

experiment to be repeated with (possibly) different outcomes, 

the ratio of successes to failures is an adequate fitness metric 

[25]. 

For some optimization problems and issue scenarios, other 

optimization techniques may be faster at convergent than 

genetic algorithms. Integer linear programming, ant colony 

optimization, evolutionary programming, simulated 

annealing, Gaussian adaptation, hill climbing, and swarm 

intelligence are a few more and alternative approaches (e.g., 

ant colony optimization, particle swarm optimization). 

Genetic algorithms may or may not be appropriate depending 

on how well-understood the problem is; well-known 

problems typically have superior, more specialized solutions. 

2. Machine Learning and Genetic 

Algorithms Applied in Healthcare 

Systems 

In this section, we look at genetic algorithms core 

applications in the field of healthcare and medicine. We 

present application of GA and concepts on radiology, 

oncology, cardiology, obstetrics and gynaecology, surgery, 

infectious disease, and healthcare management. A review of 

some of these implementations are addressed in this paper. 

Radiology 

Radiology generates a large amount of data that requires to 

be analysed and interpreted by radiologists in a relatively 

short time through imaging techniques. Recently, a number 

of tools and software programs have been created to combat 

the detection and diagnosis of expanding interdisciplinary 

technologies that aim to aid radiologists in more rapid and 

accurate image analysis through the segmentation, detection, 

and classification of normal and pathological patterns found 

on various imaging modalities. Ultrasound, CT scan 

(compute tomography), magnetic resonance imaging (MRI), 

and X-rays are typical examples [22]. 

An image of a scene, such as human body organs in 

radiology images, is obtained, processed, and interpreted in 

machine vision. The boundaries of shape and size of the 

objects within the photographs must be established in order 

to access the objects in detail. As a result, one of the crucial 

components of automatic image processing techniques is 

edge detection [26]. Many researchers obtain and use Gas for 

image edge detection for a variety of imaging modalities, 

including MRI, CT, and ultrasound. 

Researchers have tried to employ computational tools to 

enhance the sensitivity of the system through screening 

mammography which is the gold standard for the detection of 

breast cancer despite its failure rate [27]. Furthermore, most 

of the applications of Gas in radiology were performed or 

employed on breast cancer screening primarily using 

mammography. 

In another research conducted by Zebari et al. [28], to 

detect micro calculations in mammograms proposed breast 

cancer, the border of the breast and the nipple position were 

detected by the genetic algorithm (GA) and machine learning 

(ML), in their technique after enhancement and 

normalization of the mammograms. The mammogram 

images were aligned and deducted from each other to 

determine the asymmetry image purposive of breast cancer 

utilizing the border and the nipple position of the right and 

left breasts as a reference. The area under the receiver 

operating characteristics (ROC) which is the A2 value has 

been utilized as a necessary measure for evaluating the 

diagnostic performance of a system [26]. The proposed 

algorithm of the A2 value was estimated to 0.9 (19). 

Similarly, Pereira et al. [29] mammogram segmentation 

applied as a set of computation tools to improve the detection 

of breast cancer. In order to eliminate the artifacts followed 

by denoising and image enhancement, an algorithm was first 

designed. Consequently, hybrid wavelet analysis and the GA 

enable the detection and segmentation of suspicious areas 

with 95% sensitivity. In terms of application and success 

stories, Gas has consequently been utilized for the 

classification and detection of clustered microcalcification in 

digital mammograms ([30, 31]). 

Feature selection is used in machine learning which is the 

process of selecting a subset of features of abstraction to 

construct a model and eliminating variables with normal or no 

analytical value. The importance of feature selection is 
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essential since selecting irrelevant features would avoid the 

time, cost, and complexity of computation and minimize the 

accuracy of the model [32]. Minimizing the number of features 

would avoid the issues of over-fitting, minimize the chance of 

failure upon missing data, and enable a better presentation and 

generalization of the model [32]. Conversely, Gas has been 

employed for feature selection in research aiming to detect a 

region of interest in mammograms as normal or containing a 

mass [33] and to distinguish benign and malignant breast 

tumors in ultrasound images [34]. 

Prediction of tumor staying is a significant part of 

modeling a treatment plan. Because it is relevant for tumor 

staying, accurate tumor size and volume determination using 

non-invasive imaging studies become relevant. According to 

Zhou et al. [35], a system for extraction of tongue carcinoma 

from head and neck MRIs, GA was applied for segmentation 

of images in addition to an artificial neural network based 

(ANN-based) symmetry recognition algorithm to minimize 

the number of false-positive results. This model approach 

was able to extract tongue carcinoma from an MRI with high 

precision and small user dependency. 

Oncology 

To differentiate between a normal and dysplastic cervix, 

GA was utilized to examine the biomolecular data produced 

by Raman spectroscopy using a partial least square 

discriminant analysis technique. Finding a linear regression 

model between a dependent variable and a few predictor 

variables is the aim of this statistical technique (partial least 

squares). The system's results were 72 and 90 percent 

sensitive and specific at differentiating dysplasia from a 

normal cervix, respectively [36]. 

The massive gene expression profiling has paved the way 

that could revolutionized the field of molecular diagnostic 

and prognosis has been initiated through DNA microarrays. 

Nevertheless, the generation of large dataset poses statistical 

and analytical problems and has some requiring and need to 

find the predictive genes [37]. To find a minimum set of 

biomarkers with maximum classification and prognostication 

values in breast cancer patients Dolled-Filhart et al [38] 

generated microarray data through training breast cancer 

tissues and with many antibodies specific for various markers. 

The analysis revealed more than 95% five-year survival rate 

using Gas that three markers with available antibodies could 

define a population of patients. 

Cardiology 

Atherosclerotic plaques are a common cause of myocardial 

infarctions and strokes. Gas has been used in several 

cardiovascular medicine domains to identify mechanical 

characteristics of the plague, such as elasticity, that would 

help doctors detect and map vulnerable plaque or unstable 

situations more accurately [39]. For parameter estimation, a 

system involving gas was utilized, which is crucial for 

forecasting precise elasticity quantification and figuring out 

tissue elasticity. This system is superior than gradient-based 

strategies for inhomogeneous solution spaces with several 

local minima and the demand for significant computation 

time limiting their application. the quickening pace of 

medical diagnosis, prognosis, and illness monitoring, 

particularly in the areas of clinical proteomics and biomarker 

discovery. One cutting-edge technology that can produce 

readouts for thousands of patients from patient samples is 

mass spectrometry. Nevertheless, choosing a small number 

of highly relevant markers is necessary for the advancement 

of clinical research due to the complexity and expense of 

each procedure as well as computational and statistical tools 

for analysis. Zhou et al. [35] used an enhanced version of GA 

that supports the local float augmentation method to forecast 

the likelihood of a major adverse cardiac event (MACE) 

through recursiveness. A panel of seven proteins, which 

included myeloperoxidase, was chosen because it surpassed 

multiple existing approaches in accurately predicting the 

likelihood of MACE by 77 percent. Similar study was 

conducted by Fofanah A.J. et al [40] to determine the GA 

performance suing healthcare data to predict it the status of 

the patient affected by cardiovascular diseases. 

Logistic regression models have been frequently used in 

diagnosing disease. A genetic algorithm has been utilized to 

select the best variables for a logistic regression system 

whose objective is to model the presence of myocardial 

infractions in patients with chest pain. This method of GA 

was superior in variable selection to other traditional 

techniques [33]. 

Obstetrics and gynaecology 

Obstetricians can choose the best time to intervene during 

labour (if necessary) by comparing normal and delayed 

deliveries. One of the parameters that can serve forecast 

goals is the time to reach full cervical dilatation, delivery 

time, and segregate usually against protracted labour. In a 

study, Hoh et al. [41] used a three-parameter logistic model 

to predict the time it would take to reach full cervical dilation 

using either the Newtons Raphson (NR) approach or GA. 

Based on the GA algorithm, more cervical dilation was used, 

outperforming the NR method. 

Genetic algorithms have also been applied in prenatal 

diagnosis Fetal macrosomia is one of the fetal features that can 

complicate delivery. The difference between the large for 

gestational age (LGA) from the appropriate for gestational age 

(AGA) infants and amniotic fluid from the second trimester 

was assessed by capillary electrophoresis. Data analysis related 

to Bayesian statistical theory was applied. In order to minimize 

the computation time required for the Bayesian computation, a 

GA was used to select the appropriate wavelets or variables of 

the electropherogram. The system distinguishes LGA from 

AGA using only two wavelets, one of the albumins and the 

other of a negatively charged unknown small molecule with 

sensitivity and specificity of 100 percent and 98 percent, 

respectively [42]. The potential problems related to low-birth-

weight infants can be minimized with a prediction of fetal 

weight before delivery. According to Yu et al. [43], fuzzy logic 

with support vector regression (FSVR) to approximate the fetal 

weights and to determine the optimal features for the FSVR 

system, Gas was used to generate an evolutionary FSVR. A 

6.6 percent mean absolute percent error and 0.902 highest 

correlation coefficient between the estimated and the actual 

fetal birth weight was attained which outperformed a 
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backpropagation neural network (BNN). 

Surgery 

One of the potent mathematical algorithms that can 

forecast how systems would behave is the ANN. Due to the 

predictive power of ANNs, a GA-based on ANN (GANN) 

was created to forecast the results of surgery for patients with 

non-small cell lung cancer (NSCLC). In order to optimize, 

the GA was used to avoid hitting local minima. When the 

GANN model was used to predict the outcome for NSCLC 

patients, it performed much better than logistic regression. 

However, adding tumor size to the calculation considerably 

enhanced the accuracy of the predictions [44]. 

As the population ages, there are more geriatric individuals 

who require heart procedures. Preventing overestimation of 

risk and denial of surgery for individuals who deserve it, which 

could happen with some prediction models due to the high 

occurrence of comorbid illnesses in an elderly person, would 

be helpful if postoperative morbidity and death were 

accurately predicted. Younger age was connected with a short 

length of stay following cardiac surgery, no preoperative beta-

blocker use, a shorter cross-clamp period, and no congestive 

heart failure demonstrated that GA by employing GA can 

generate greater predictability in medicine [45]. 

Infectious diseases 

Not only in developing nations but also in developed 

nations, tuberculosis is a possible lethal infectious disease 

after the emergence of the human immunodeficiency virus 

(HIV). Tuberculosis versus non-tuberculosis patients’ 

prediction of the diagnosis, 38 parameters composed of 

examination parameters and laboratory data were used to 

develop an ANN trained by a GA algorithm. The results 

indicated that through classification accuracy of the system 

was approximately 95 percent, thus higher than the results 

obtained by other algorithms [46]. 

An integral part of the treatment modalities against HIV is 

composed of a hybrid of several antiretroviral medications 

with the objective to decrease the replication of the virus, 

which is highly active antiretroviral therapy (HAART) has 

been proposed to minimize not only side effects, but also the 

selection pressure on the virus that could lead to the 

emergence of resistant partially since long term HAART 

treatment requires patient compliance and possibly be related 

with some side effects. Consequently, Carlisle et al. [47] 

devised a GA-based system to select the best HAART 

treatment schedule to control HIV and a model of the 

immune system was utilized to evaluate the effects of anti-

HIV drugs on virtual patients. 

Healthcare management 

Efficient management of monetary resources and 

personnel is an integral part of the health system across the 

globe. In order to improve patient service satisfaction, and 

cost-effectiveness ratios are efficient scheduling of patient 

admission is one of the significant elements of hospital 

management or healthcare management. To improve patient 

scheduling in an ophthalmology hospital, a mathematical 

model was designed and optimized using GA. In a 

comparison of the new algorithm from the traditional, “first 

come first server” by shortening the waiting list, lowering the 

vacancy rate of hospital beds, minimizing preoperation 

ability waiting time for patients, and increasing the number 

of patients discharged from the hospital [48]. In another 

study, GA and Particle Swam Optimization (PSO) were 

combined as another metaheuristic algorithm and it improved 

patient scheduling, minimize time wastage, and increase 

patient satisfaction [49]. 

Additionally, in clinical laboratories, regular rotation of staff 

based on their skills through various facilities is fundamental 

for maintaining job skills and competence. The application of 

Gas has improved staff rotation scheduling in clinical 

laboratories. The application of Gas has improved the staff 

rotation schedule in the clinical laboratory. The GA-based 

application was capable of planning the rotation of staff 

effectively, by ensuring maintenance of techniques and skills 

saving time and cost necessary for the scheduling process. 

Evolution of GA Enhancement 

Improvement of one makes performance limit evaluation 

into a universal and ideal problem, which is expressed as: 

	�������	
∈�

��                                (1) 

Where ���  is the objective function that determines the 

intended performance; where ������  are the optimization 

variables that are for any simulation exercise; and where R is 

the set made up of all potential scenarios. Equation (1) serves 

as the performance limit in this scenario and is regarded as the 

objective function's minimal value. Additionally, equation 1 is 

an analogous representation of the optimization issue. 

Evolution of Desired Setting 

The evolution test by the enhanced GA consists of five 

fundamental steps, similar to the standard evaluation, as shown 

in Figure 2 [50], where the crossover or mutation operators are 

modified to increase the evaluation efficiency. In such 

magnitude, the new ones are referred to as crossover and 

manifold mutation. In relation to the performance limit, which 

is more likely to be activated with complicated simulations, the 

full crossover and manifold mutation operators are designed to 

improve the likelihood of developing more complex situations. 

The initial population, say �� = {��, ��… . . ���}  evaluation 

situations, is generated randomly. The assess situation, ��  is 

composed of values chosen randomly from the � −
����� !�"#� elements. A chromosome containing L-genes is 

used to depict each simulation as an individual that is related 

with it. An objective function measures the performance. 

When it repeats and reaches the desired value, it indicates that 

the simulation procedure has ended and the performance limit 

has been reached. The sort-based fitness function is employed 

in natural selection [51] to avoid premature selection due to 

over-selection of individuals and to guarantee that each person 

has a greater than zero chance of being chosen. This is denoted 

by the following mathematical function: 

$%��& =
'(�%'(�&%)*(�&

%��(�&%��&
                     (2) 

Where $%��&  is the fitness function determining the 
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probability of the selection of �� , + ∈ ,1, 2#/ is the ranking of ��  number. As part of an elitist selection method to assure 

worldwide convergence, the best person discovered throughout 

the exam is recorded before natural selection [52, 53]. 

 

Figure 2. Evolutionary algorithm performance evaluation. 

Complexity of GA Architecture 

Crossover and mutation operators are the GA's primary 

inputs. In order to determine the effectiveness of the reviewed 

situation without carrying out the evaluation with the goal of 

improving them, the chance of developing more complicated 

simulations must increase. To set up an analytical function in 

various circumstances, such as between the performance of an 

automated driver system (ADS) and evaluation scenarios, is 

challenging. The situation complexity index is developed using 

the analytical hierarchy process (AHP) [54, 55]. Compared to 

the goal function obtained from equation [1] this is different. 

Any complex problem has a number of different, intricate 

leverage variables based on the various assessment scenarios 

being run. When structuring the evaluation situation 

numerically, it is highly challenging to ascertain the 

importance of each aspect. This tree structure necessitates 

comparative study of the variables that are related to the 

same parent node. The relevance level of the node in the 

bottom layer is how the AHP is determined [56, 57]. The 

following mathematical examples show this: 

01 � ∏ 3�,4%�,4&∈5                           (3) 

Where 01  is the significance degree, 3�,4 	 is the relative 

significance of node, ��,4 and 5 is set composed of the index 

of the path from �6,1	to the root. 

An evaluation scenario, � , is denoted by the values of 

situation elements, that is �� � ���, ��… . . ����,	where �� 
denotes the value of the � � !7  situation element. To 

determine the exact performance limit, ��  is generated 

randomly in it continues range, consequently ��is not equal 

to the discrete value, �6,4. The linear interpolation is used to 

calculate the significance degree of ��8%�6,1(�, �6,1& and the 

situation complexity index is obtained by the full function of: 

9%�& � ∑ 0� � ;<=>?@*(AB,<=>AB,<(AB,<=> ∗ %01 � 01(�&
�D�          (4) 

Crossover Operator 

The traditional GA has no prior knowledge regarding the 

effectiveness of the offspring because the crossover point is 

chosen at random. The likelihood of missing the best one is 

great; as a result, the good offspring exist in the candidate 

ones without a doubt. Figure 3 develops the entire crossover 

operator (for singleton and manifold operators). In each 

position, this does the single point crossover. If all candidate 
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kids are chosen to mutate, the number of offspring will 

eventually improve or rise by the geometric progression. To 

select the ultimate offspring pair based on their scenario 

complexity index, which has a positive correlation with 

selection likelihood, the neighbouring competition 

mechanism is improved. The conventional operator only 

creates one population for the manifold mutation operator, 

and there is a slim chance that population will contain any 

decent people. To expand the possibilities, the manifold 

mutation operators are designed as shown in Figure 3. It 

performs conventional canonical mutation on the population 

for [58]. Using the overall simulations' complexity index 

provided by the neighbouring competition process, the final 

progeny is selected. ��
 � E�!%�F ,G
&.  By randomly 

selecting a candidate mutation offspring population as the 

final on %�
& with the probability that: 

G�
 � HIJK�L*M�
∑ HIJKNL<MOP<Q>

                          (5) 

where E�!%�F ,G
& donotes the canonical mutation on X
C
 

with the mutation probability, Wm [56]. 

 

Figure 3. Full GA crossover operator (top) and multiple mutation operator (bottom). 

Classical GA 

An optimization technique called a genetic algorithm 

borrows the idea of natural selection from biology. It uses the 

Darwinian theory of evolution's premise of survival of the 

fittest [59] because it is a population-based search algorithm. 

Utilizing an iterative process, new populations are created by 

applying genetic operators to individuals already existing in 

the population. Important components including chromosome 

representation, selection, crossover, mutation, and fitness 

function serve to represent them. The GA algorithm looks 

like this: The initialization of an n-chromosome population 

(P) is random. Each P chromosome's fitness is determined. 

According to the fitness value, two chromosomes (examples 

C1 and C2) are chosen from the population P. To create an 

offspring, let's say Os, we apply the single-point crossover 

operator with crossover probability (Cp) to C1 and C2. The 

uniform mutation operator is then used to create O's by 

creating an offspring (Os) with a probability of mutation (Mp) 

(new offspring). Once the new population is complete, the 

new offspring Os are introduced. The following pseudocode 

is a typical classical GA (algorithm). 

Algorithm 1: Classical Genetic Algorithm 

Input:  

Population size, n 

Maximum number of iterations, Max 

Output: 

Global Solution, Pbt 

Begin 
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Generate initial population of n chromosomes +�%� � 1, 2,#& 
Set iteration counter ! � 0 

Compute the fitness value of each chromosome 

While ! S E T& 
Select a pair of chromosomes from initial population based 

on fitness 

Apply crossover operation on selected pair with crossover 

probability 

Apply mutation on the offspring with mutation probability 

Replace old population with newly generated population 

Increase the current iteration t by 1 

End While 

Return the best solution, Pbt 

End 

3. Genetic Operator 

Machine learning algorithms or hybrids of GA and ML are 

developed using a range of gas operators. Encoding 

techniques, crossover, mutation, and selection processes are 

some of these operators. The GAs operator utilized in several 

health systems is depicted in Figure 4. 

The encoding technique converts data into a certain format 

and is important in the majority of computing issues. The 

supplied data must be encoded using a certain bit string [60]. 

Depending on the issue domain, several encoding strategies 

are used. 

The encoding systems that are currently most well-

understood are binary, octal, hexadecimal, permutation, 

value-based, and tree. Each gene or chromosome is 

represented as a string of [61] in the widely used encoding 

system known as binary encoding. Crossover and mutation 

operators can be implemented more quickly since each bit 

represents a feature of the solution. However, binary 

conversion costs additional work, and algorithm accuracy 

depends on binary conversion. Due to epistasis and natural 

representation caused by the bit stream changing depending 

on the task, the binary encoding approach is insufficient for 

various engineering design challenges. Chromosomes are 

represented by octal numbers in the octal encoding system. 

The chromosome is also represented by hexadecimal 

numbers in the hexadecimal encoding technique [61]. In this 

encoding system, the string of integers that designates the 

place in a sequence denotes the chromosome. This is more 

important while trying to solve more challenging issues. It is 

employed in neural networks to determine the ideal weights. 

 

Figure 4. Operators used in genetic algorithms. 
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To determine whether the particular string will contribute 

in the production process or not, the selection technique is 

important step in genetic algorithms. The selection phase is 

occasionally known as the production operator. The 

convergence rate of GA depends upon the selection 

pressure. Roulette wheel, rank, tournament, boltzman, and 

stochastic universal sampling are the eminent examples of 

selection methods. Roulette wheel selection maps all the 

possible strings onto a wheel with a portion of the possible 

strings onto a wheel with a portion of the wheel allocated to 

them according to their fitness value. According to Agarkar 

et al. [61], to select specific solutions that will participate in 

the formation of the next generation the wheel is then 

rotated randomly. Nevertheless, it has some shortcomings 

such as error introduced by its stochastic nature. Ranks are 

provided according to their fitness value to enable 

individual gets an opportunity of getting selected in relation 

to their ranks and the selection technique minimizes the 

chances of prematurely converging the solution to a local 

minimum. In regards to tournament select technique 

proposed since 1983, the individuals are chosen according 

to their fitness values from a stochastic roulette wheel in 

pairs. The individuals with higher fitness value are added to 

the pool of next generation, after the method of selection, 

and each individual is compared against all # � 1  other 

individuals provided it reaches the final population of 

solutions. 

When using crossover operators, the genetic information 

of two or more parents is combined to produce the offspring. 

One-point, two-point, k-point, uniform, partially matched, 

order precedence preserving crossover, shuffle, reduced 

surrogate, and cycle are examples of well-known crossover 

operators. In a single point crossover, a random crossover 

point is selected, and the genetic information of two parents 

that is beyond that point will be exchanged. However, in a 

two point and k-point crossover, the genetic information is 

switched based on the produced segments at two or more 

randomly selected crossover locations. The genetic data after 

being swapped for single- and two-point crossover is shown 

in Figure 5. While in two-point crossover the middle segment 

of the parents is replaced to produce the new offspring, it 

replaced the tail array bits of both the parents. 

Table 1. Comparing various encoding algorithms. 

Encoding Algorithm Advantages and Application Disadvantages 

Binary 
a. Easy to implement 

b. Faster execution and can be used on problems that support binary encoding 
No provision for inversion operator 

Octal Easy to implement and can be used on limited application No provision for inversion operators 

Hexadecimal Easy to implement No provision for inversion operators 

Permutation Provision of inversion operator and can be used on task ordering problem No provision for binary operators 

Value Value conversion not needed and can be used on neural network problems Requires specific crossover and mutation 

Tree Operator can easily be applied and can be applied in evolving programs Difficult to design tree for some problems 

Table 2. Comparing different selection methods. 

Selection Method Advantages Disadvantages 

Elitism  Preserve the best individual in a population The best individual can be lost due to crossover and mutation operators 

Sampling stochastic universal 
a. Free from bias 

b. Fast method 
Premature convergence 

Boltzmann Global optimum can be achieved Computationally expensive 

Roulette Wheel 

a. Easy to implement 

b. Simple 

c. Free from bias 

1) Risk of premature convergence 

2) Depends upon variance present in the fitness function 

Rank 
a. Preserve diversity 

b. Free from bias 

1) Slow convergence 

2) Sorting required 

 

Figure 5. A typical scenario of a single point crossover (top) and two-point crossover (bottom). 

Mutation Operators 

Mutation is an operator that keeps the genetic variety from 

one population to the next. Displacement, simple inversion, 

and scramble mutation are the three most important mutation 

operators. Displacement mutation refers to the operator that 

moves a portion of a specific individual solution inside of 
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itself. In exchange mutation and inversive mutation operators, 

a portion of an individual solution is either exchanged with 

another portion or inserted in a different position. The simple 

inversion mutation operators (SIM) in a single solution 

reverse the substring between any two given sites. The SIM 

is an inversion operator that reverses the randomly chosen 

string and inserts it in a random spot. The scramble mutation 

operator determines whether or not the fitness value of the 

currently created solution is improved by placing the 

elements in a given range of the individual solution in a 

random order. 

Table 3. Comparing different crossover methods. 

Methods Advantages Disadvantages 

Uniform 

a. Unbiased exploration 

b. Applicable on large subsets 

c. Better recombination potential 

Less diverse solution 

Single-point 
a. Easy to implement 

b. Simple 
Less diverse solution 

Tow and K-point Easy to implement 
1) Less diverse solution 

2) Applicable on small subsets 

Reduced surrogate Better performance over small optimization problems Premature convergence 

Precedence preservative (PPX) Better offspring generation Redundancy problem 

Order crossover (OX) Better exploration Less of information from previous individual  

Cycle crossover Unbiased exploration Premature convergence 

Partially mapped (PMX) 
a. Better convergence rate 

b. Superior than the other crossovers 
NA 

Table 4. Mutation operators. 

Operator Advantages Disadvantages 

Displacement mutation 
a. Easy to implement 

b. Applicable on small problem instances 
Risk of premature convergence 

Simple inversion mutation Easy to implement Premature convergence 

Scramble mutation 
a. Affects large number of genes 

b. Applicable on large problem instances 

1) Disturbance in the population 

2) Deterioration of solution quality in some problems 

 

Real Coded GA 

The design and development of real coded genetic 

algorithms (RCGAs) hseas been widely utilized in different 

real-lie applications. The representation of chromosomes is 

closely related with real-life challenges. Robustness, 

efficiency, and precision are the major advantages of RCGAs. 

Nevertheless, RCGAs suffer from premature convergence. 

The improvement to their performance matrixes is the current 

tasks for researchers. By modifying the crossover, mutation, 

and selection operators are developed by RCGAs. The 

searching capability operators are not satisfactory for 

continuous search space. The advancements in crossover 

operators have been implemented to enable their 

performance in real settings or infrastructure. A heuristics 

crossover that was applied on parents to produce offspring 

was presented by Wright [62]. Arithmetical crossover 

operators for RCGAs were proposed by Jennings et al. [63] 

and consequently, Sato and Oyama [64] developed real-

coded crossover operators, which is based on features of 

single-point crossover in binary GA. A novel mutation 

operator based on power law and named as power mutation 

was presented by Das and Pratihar [65]. A novel mutation 

operator for enhancing the performance of RCGA was 

presented by Tang and Tseng [66] of which both approaches 

were fast and reliable. 

+� � �
� ,%1 − U&T� + %1 + U&W�/	 #X	Y� =

�

�
,%1 + U&T� +

%1 − U&W�/	                                (6) 

where	P	and	Q	are	two	off
− springs	generated. x	and	y	are	individuals	and	β	is	a	variable 

whose	value	lies	in	the	interval	of	,0,∞/ 
Blend crossover, with mathematical formulation where 

offspring + is generated from parents T	 #X	W from interval 

,E�# − %E T − E�#&r&,E T + %%E T − E�#&r&/  where 

E�# = E�#%T, W&	 #X	E T = E T%T� , W�&, r  is a variable 

whose value lies in the interval of ,0, 1/ [21]. 

The mathematical formulation of genetic operators in 

RCGAs such as arithmetic crossover and geometric 

crossover are presented as follows: 

Arithmetic crossover: +� = rT� + %1 − r&W�  and Y� =
rW� + %1 − r&T� 

Geometric crossover: +� = W�
s ∗ W�

%�(s&
 and Y� = W�

s ∗
T�
%�(s&

 

Similarly, the operator unimodal normal distribution 

crossover operator with mathematical formulation given by 

the following functions: 

+� = �� + tu + ∑ ψ1
�(�
1D� wH1                       (7) 

Y� = �� − tu − ∑ ψ1
�(�
1D� wH1	                     (8) 

xℎyzy	y1 , { = 1,……# − 1  are orthogonal bases that 

perpendicular to u ∗ ��  in the midpoint and u	 is the 

difference vector, t  is a random value taken from normal 

distribution and ψ1  and # − 1  random values follow a 

normal distribution. w  is the length from parent 3 to 

perpendicular line [67]. 
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Furthermore, Deep et al. [68] presented a mathematical 

formulation of Laplace crossover genetic operators as stated 

below: +� � �� + U|�� � }�| and }� + U|�� � }�| thus, 

U � ~ � ��"�H%�&, � ≤ �

�

 + ��"�H%�&, �
�

�

	                   (9) 

where a and b are variables.The default values of a and b are 

0 and 1, respectively, u is random variables. 

Multi-objective GAs 

The modified version of simple GA is called multi-

objective. The multi-objective GA differs from GA in 

regards to its fitness function that is assigned to it. The other 

remaining phases are similar to GA. The generated optimal 

Pareto Front in the objective space in such a manner that no 

further enhancement in any fitness function besides 

distributing the other fitness functions are the main objective 

of multi-objective GA [69]. The major goal of multi-

objective Gas are convergence, diversity, and coverage. 

Pareto-based and decomposition-based multi-objective Gas 

are the two broadly categorized of multi-objective Gas. 

Pareto-based Multi-objective GA 

The idea of Pareto dominance was proposed in multi-

objective Gas and the first multi-objective GA was developed 

by Fonseca and Fleming [70]. Nevertheless, multi-objective 

GA has some shortcomings in regards to parameter tuning 

problem and degree of selection pressure. The proposed 

method was the niche and decision maker concepts to resolve 

the multimodal challenges. Furthermore, a niched pareto 

genetic algorithm that used the concept of tournament 

selection and pareto dominance was proposed by Horn et al. 

[71] development of a non-dominated sorting genetic 

algorithm, fast elitist non-dominated sorting genetic algorithm, 

dynamic crowing distance in non-dominated sorting genetic 

algorithm sorting genetic algorithm (NSGA-II) [21], a multi-

objective micro-based techniques may be deteriorated in many 

problems developed by Coello and Pulido [72]. 

Parallel GAs 

In order to improve the computational time and quality of 

solutions through distributed individuals, the motivation 

behind is the design and implementation of GAs Master-

slave parallel GAs, fine grained parallel GAs, and multi-

population course gained parallel GAs are the major broad 

categories of parallel GAs [73]. The computation of fitness 

functions is distributed over the various processors and 

consequently referred to as master-slave parallel GA. On 

another hand as parallel computers are used to solve the real-

life problems thus referred to as gained GA. The genetic 

operators are bounded to their neighbourhoods. Nevertheless, 

the exchange of individual among sup-populations is 

performed in a course gained by GA and the interaction is 

enhanced among the individuals. The control parameters are 

also transferred during migration. To maximize memory 

bandwidth and arrange threads for utilizing the power of 

GPUs are the major challenges in parallel GAs. The 

comparative analysis of parallel GAs in regard to hardware 

and software are indicated in Table 5. 

Table 5. Analysis of parallel GAs in regard to hardware and software. 

Hardware No. of Processors Programming Language used API Main Application of GA 

Cluster 130 Java  Data mining 

Multicore CPU 8 Java  Path finding 

Cluster 30 Fortran MPI Road traffic 

Cluster 48 JavaScript Node. JS Building structure 

Multicore CPU 8, 3 Java Java. util. component 
Land planning  

Job scheduling 

Cloud 300  MPI Internet of things 

Cluster 100  MPI Wireless Network 

GPU 448  CUDA Scheduling 

GPU 512  CUDA Electronics  

 

4. Architecture of the Proposed Hybrid 

GA and ML Approaches 

MATLAB is currently a widely used programming 

environment that supports numerous computer platforms. It 

is the fastest and most powerful mathematical calculus 

because of its simplicity, ease of use, and learning capacity. 

Its rich and simple data visualization features also make it a 

very enticing programming environment. The MATLAB 

environment offers a strong base upon which to construct and 

optimize toolbox collections, as well as application-specific 

functionalities. The MATLAB toolbox is known as GPLAB 

(genetic programming). 

The proposed hybrid genetic algorithm and machine 

learning algorithms (HGAMLA) approaches include 

dynamic functionalities such as reset parameter’s function, 

set parameters function, set operators function, desired 

obtained function (variables, indices, x parameters, black 

and white, size of x and y variables), accuracy and 

complexity function (variables, offsets, black and white, and 

size x*y), pareto function), and GP tree function. 
Algorithm 2: Parameters Variables for GPLAB Algorithm 

Switch 

Nargin 

Case 

2 

Determine the type 
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Case 

3 

Equate the type and variable nargin  

Otherwise 

Determine the error input arguments 

End 

What will recognized or not as parameter state variables 

What will be the defaults values of the define parameters 

If 

Parameters and list are defaults 

Determine all variables 

For all required variables (i=1) 

Evaluates the default values 

Evaluate the parameters 

End  

End 

If 

Structural parameter-list are defaults 

Setting separators allowed  

Assignment symbols allowed 

For i=1 (number of parameters) 

If number of pieces =2 

If field and available values 

Sum tests the text parameters in which there is a cell array of valid strings 

If sum>0 and available values 

If Iscell values � 0 

Evaluate the parameters 

Else 

Evaluate values 

End 

Else 

Warning (invalid parameters values 

End 

Else 

Warning (set parameters: unknown parameters 

End 

Else 

Warning (set parameters: invalid parameter settings) 

End 

End 

End 

 

Figure 6. A block-diagram for the proposed HGAMLA architecture. 
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A working GPLAB toolbox that executes the symbolic 

regression problem known as the polynomial quartic serves 

as an illustration of this architecture. The proposed 

HGAMLA architecture of the GA and ML algorithms for 

health-related problems as well as general predictions and 

estimate criterion settings is depicted in Figure 6 by a block 

diagram. In our experimental simulation activities, 100 

individuals were used for 40 or more generations with 

automatic operator probability adaptation, drawing a number 

of plots during runtime, and two more plots at the end of the 

run. The experimental outcomes return all the algorithmic 

variables required to plot charts, carry out more runs, draw 

trees, etc. They also return the top candidates discovered 

throughout the simulation exercises. 

Table 6 shows the block diagram that was utilized to create 

the proposed HGAMLA architecture of the GA and ML 

algorithms for general predictions and estimate criteria 

settings and health-related challenges. 

Set Operators Function 

Sets the parameter variables for the GPLAB algorithm. 

The set parameters incudes Params and Setting which 

applies the settings to the parameters stored in Params, and 

returns the updated set of the parameters. If the Params is 

empty, all the parameters not included in Settings are set with 

the default values. The Setparams includes three parameters: 

Params, Settings, and State, which applies the settings to the 

state variables instead of the parameter variables. This is not 

advisable for the user to do as it may put the algorithm into 

an inconsistent state. The set operators have two arguments 

called input argument and output arguments. The set of 

parameter or state variables called structure defines the input 

arguments and the set of updated parameter or state variables 

construct the output arguments. 

 

Figure 7. Set operators function for the GPLAB algorithm. 

The Setoperator functions stores information as 

parameters for the GPLAB algorithm. The set operators 

include four parameters: Params- the algorithm running 

parameter structure, OPName-the name of the operator to 

use (string), NParents- the number of parents required by the 

operator (integer), and NChildren- the number of children 

produced by the operator (integer) has been set with the data 

provided in the function arguments (OPName, NParents, 
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NChildren). Several operators can be set to the same time by 

adding several triplets (OPName, NParents, NChildren) to 

the list of arguments. The functional set operator algorithm is 

represented in Figure 7 of the GPLAB algorithm. 

Desired Obtained Function 

The desired obtained function contains four parameters: 

VARS, INDICEBEST, INPUTVAR, BLACKWHITE, and 

SIZEPLOT. It is called the plots desired functions with the 

GPLAB. The desired functions draw a plot with the desired 

function to approximate and the approximations obtained by 

the best individuals in indices best. Only one input variable T 

is represented in each plot. The plot can be sized by the user 

with ‘SIZEPLOT’ and be drawn in black and white by using 

the flag ‘BLACKWHITE’. If INDICESBEST is empty, all the 

available best individuals will be used, until a certain limit. If 

the size plot is empty, the default plot size will be adopted, if 

any of size plot dimensions is null, the default size for that 

dimension will be adopted. The input arguments: VARS- all 

the variables of the algorithm, INDICESBEST- the best 

individuals to plot for all 1T# matrix, INPUTVAR- the input 

variable to plot (integer), BLACKWHITE- the flag to draw a 

black and white or colour plot (Boolean), SIZEPLOT- the 

T	 #X	W size of plot for default 1T2	matrix. 

The desired obtained function algorithm is explained 

below: The symbline variables are initialized if the draw 

black and white flag colour plot (Boolean) is not empty. The 

SIZEPLOT that contains the x and y size of plot are initialize 

and equated to zero. The algorithm also checks if indices and 

best size is equated to one (1) and determine the best history. 

If the black and white (BW) and length called indices is 

greater than length (symblline) the algorithm provides a 

warning of the desired obtained and cannot use so many 

indices and consequently, discard the last ones. If the indices 

are greater than the size and lesser than 1, the algorithm 

provide a warning of the desired obtained and some indices 

not available. This enables the algorithm to get the desired 

results and obtained results by determining the length and 

compute the individual population. The architecture of the 

functional desired and obtained function is represented in 

Figure 8. 

To determine the correct x variable, the algorithm checks 

if variable T is less than one and variable x is greater than 

length (data), the algorithm send a desired obtained error 

called ‘input variable not available’. The algorithm search 

for required dataset size and sort them in rows by computing 

the ���y	T	 #X	W	� z� ��y  of which one is less than and 

equal to zero and equal to 400 and equal 360 to obtain the 

desired versus obtained. The black and white flag chart is 

drawn by determine the list of variables and function and 

finally build the length or indices to approximate base on 

generation of GA. 

Accuracy and Complexity, Pareto Function, GP Tree 

Function 

The accuracy versus complexity function incapsulate four 

main parameters: VARS, OFFSETS, BW (black and white), 

SIZEXY). The plots accuracy and complexity measures with 

GPLAB. The accuracy and complexity draw a plot with the 

evolution of fitness and complexity measures level nodes of 

the best individuals. The offsets can be used to improve the 

visibility of the several lines in the plot (fitness, level, nodes). 

The plot can be sized by the white by using the flag 

BLACKWHITE. If the offsets are empty, no offsets will be 

considered. If SIZEPLOT is empty, the default plot size will 

be adopted, if any of OFFSPLOT dimensions are null, the 

default size for the dimension will be adopted. There are four 

input arguments in the algorithms: VAR-all the variables of 

the algorithm (struct), OFFSETS-the offsets for each line and 

empty for no offset (1x3 matrix), BLACKWHITE-the flog to 

draw a black and white or colour plot called Boolean, and 

SIZEPLOT- the T	 #X	W  size plot with empty for default 

(1T2	� !z�T). Figure 8 shows the flowchart for the accuracy 

and complexity of the algorithms (right). 

The Pareto front is plotted using the GPLAB. The plot 

Pareto variables draw a plot number of nodes in blue (see 

analysis and results). The red graph is the Pareto front that is 

the set of solutions for which no other solution was found of 

which both has smaller free and better fitness. The sizes and 

fitness of the current population are plotted in green. The 

inputs arguments contain VARS- all the variables of the 

algorithm are structured. The Pareto front has no output 

arguments and it perform the following functions: It ensure 

the number of nodes are computed for current population, it 

builds the Pareto front variable, it performs the cross 

validation, collect fitness and number of nodes, and it 

compute and plot the Pareto front. 

The GA Tree function algorithm translate a GPLAB tree 

into a string. The tree (TREE2STR) returns the string 

represented by the tree, in valid MATLAB notation, ready 

for evaluation. The input arguments contain the TREE 

parameter (the tree to translate the structure) and the output 

arguments contain string parameter (the string represented by 

the tree). The TREELEVEL counts the number of levels of a 

GPLAB algorithm tree. The GPLAB algorithm that represent 

individual representation tree with input and output 

arguments that contain TREE parameter -the tree of measure 

and NLEVELS the depth level of the tree, respectively. The 

TREESIZE returns the tree size of a GPLAB individual. The 

tree size includes INDIVIDUAL, PARAMS, DATA, 

TERMINALS, and VARSVALS that returns the tree size of 

individual measured as the number of nodes. The input 

arguments include: INDIVIDUAL- the individual whose 

fitness is to measure (struct), DATA- the dataset on which to 

measure the fitness struct), TERMINALS-the variables to set 

with the input dataset (cell array), VARSVARS- the string of 

the variables of the fitness cases (string). The output 

arguments include INDIVIDUAL-the individual whose tree 

size was measured. The number of nodes counts of a GPLAB 

algorithm tree can be determine by returns of NODES 

(functions and terminal) of a GPLAB algorithm individual 

representation tree (see Figure 7 left). 
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Figure 8. Desired and obtained function flowchart. 

Descriptions of Dataset 

The dataset employed in this experimental analysis was 

divided into three sections: the probability expressions, the 

heart disease dataset, and the 11-multiplexer represented in x 

and y variables. In order to compare the block and thread 

intertwined spirals (x variable) against the variable, the 

multiplexer was tested using a training set size of 2048. The 

y-axis determines the probability expression in the and plot, 

which is represented between [1.1052, 2.7183], and and 

between and. The dataset for cardiac disease is displayed as 

follows: A dataset is created by taking into account some of 

the data from 779 people. The challenge is to determine 

whether each person will get heart disease based on the 

information that has been provided about them. The dataset 

has 14 parameters that are effective for learning GA and ML, 

and they indicate variable x, which includes the following 

parameters: Age: displays the person's age; Sex- uses the 

following format to display a person's gender: 0 = female, 1 

= male; Chest-pain Type- uses the following structure to 

show the kind of chest pain the person is feeling: 1 denotes 

asymptotic angina, 2 typical angina, 3 non-anginal pain, and 

4 atypical angina; Resting Blood Pressure: Displays a 

person's resting blood pressure in millimetres of mercury 

(mmHg); The serum cholesterol is displayed as mg/dl in 

Serum Cholesterol (unit), Fasting Blood Sugar: Compares a 

person's fasting blood sugar level to 120 mg/dl. 0 (false) if 

fasting blood sugar is less than 120 mg/dl, 1 (true) otherwise; 

A normal resting ECG is 0; an irregular ST-T wave is 1, and 

a left ventricular hypertrophy is 2; Max heart rate achieved—

displays a person's maximum heart rate; 0 = nil, 1 = exercise-

induced angina; Exercise-induced ST depression compared to 

rest: reveals whether a value is an integer or a float; Peak 

exercise ST segment: 1, 2, and 3 are upslopes, respectively; 

Fluoroscopy-based main vascular count (0–3): value is 

shown as an integer or float; Thalassemia: 3 indicates normal, 

6 indicates a fixed defect, and 7 indicates a reversible defect; 
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Heart disease diagnosis: Determines whether a person has 

heart disease or not. 0, 1, 2, 3, and 4 indicate presence. 

Model Training and Prediction 

Because we already know whether each patient has heart 

disease, probability expressions, and an 11-multiplexer, we 

can train our prediction model by analyzing the data that is 

currently available. This will help us to assess the 

effectiveness and accuracy of the GA model. This method is 

often referred to as learning and supervised modularization. 

The trained model is then applied to analyze the complexity, 

variety, and performance of the GA model, as well as 

forecast whether users have heart disease. 

 

Figure 9. Model training and prediction. 

5. Experimental Results and Analysis 

The experiment was carried out using the MATLAB 

programming environment, an x64-based processor, an Intel 

(R) Core (TM) i7-7500U CPU running at 2.70GHz and 

2.90GHz, and 16GB of RAM. In order to determine the 

following GPLAB functions—accuracy vs complexity, 

pareto front, GPLAB tree functionality, desired achieved 

function, GA operators, fitness, structural complexity, and 

population diversity—the findings were presented in tables 

and figures. For 25 generations, 100 individuals were 

inserted in accordance with the analysis, and the results for 

each generation were shown in Table 6. Surprisingly, the GA 

provides varied values depending on the generation type, 

consumed resources, fitness, test fitness, depth, and number 

of nodes for any set of computation (25 generations and 100 

individual). 
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Figure 10. Results of the GA tree produced by the GPLAB algorithm for 100 individual populations over 25 generations (top) and 40 generations (bottom). 
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Figure 11. The pareto front was developed for a population of 100 individuals, 40 generations, and 25 generations, respectively. 

The term "generations" refers to the number of cycles that 

have passed before the GA has ended. Depending on the 

complexity and problem kind, we may just need a few hundred 

loops in some circumstances, while we may need many more. 

Additionally, depending on the GA architecture, this parameter 

may not always be used, especially if deterministic criteria are 

used to determine when the GA should be terminated. The GA 

parameters are rigidly defined regardless of whether it discovers 

an efficient, more or less efficient, or optimal solution. The GA 

result is affected positively or negatively by changes (increases 

or decreases) in the value of these parameters, thus choosing the 

appropriate parameters is a difficult process. To ascertain the 
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depth and nodes of the GA, the test was run for 25 generations 

(top), 40 generations (bottom), and 100 individuals during the 

simulated activities. According to the results, which are shown 

in Figure 10, there were dynamic generation of various depths 

and nodes utilizing the same generation and individual 

population for the first, second, and so on. 

According to the findings shown in Figure 11, a Pareto 

front algorithm (functional) was computed for 40 generations 

and 100 individual populations using over 100 nodes and 40 

fitness (top). The green data point represents the current 

population, the red line the pareto front, the blue line the best 

for the number of nodes, and the pink line the fitness test. As 

a result, test fitness performance improves and the resultant 

prediction becomes better as the number of nodes increases. 

Additionally, fitness functions are better and heart disease 

experiments against the GA/GP in our simulation exercises 

are more accurate where the current population of data points 

is large. It should be emphasized, nevertheless, that as the 

algorithm is run more frequently, a more diversified pareto 

front is obtained, which enhances the program's forecast. 

Table 6. Experimental results showing 25 and 50 generations with 100 individual population. 

Experimental 

Computation 

Number of 

Generation 

Number of 

Individuals 

Used 

Resources 

Best obtained 

so far 
Fitness Test Fitness Depth 

Number of 

Nodes 

1st Results 
Initial Gen. 

100 individual 

population 

1024 67 10.103316 10.808240 6 16 

2nd Results  1024 27 12.766600 25.066600 1 1 

1st Results 
1 

1321 67 10.103316 10.808240 6 16 

2nd Results  1116 146 10.842765 12.108143 5 6 

1st Results 
2 

1220 232 8.895924 18.178717 4 7 

2nd Results  988 243 10.368153 18.178717 6 15 

1st Results 
3 

958 232 8.895924 18.178717 4 7 

2nd Results  979 243 10.368153 18.178717 6 15 

1st Results 
4 

856 448 6.897281 19.165462 10 24 

2nd Results  1134 450 9.4726114 19.907328 14 39 

1st Results 
5 

793 448 6.897281 19.165462 10 24 

2nd Results  942 530 6.050000 17.366600 3 5 

1st Results 
6 

582 581 6.667338 18.446664 6 11 

2nd Results  976 530 6.050000 17.366600 3 5 

1st Results 
7 

528 581 6.667338 18.446464 6 8 

2nd Results  1489 530 6.050000 17.366600 3 14 

1st Results 
8 

672 753 6.387716 12.654220 4 8 

2nd Results  1930 817 4.799050 13.788685 6 14 

1st Results 
9 

766 753 6.387716 12.654220 4 8 

2nd Results  2877 817 4.799050 13.788685 6 14 

1st Results 
10 

954 753 6.387716 12.387716 4 8 

2nd Results  3096 1015 4.576328 15.511013 18 47 

1st Results 
11 

889 753 6.387716 12.654220 4 8 

2nd Results  3319 1059 4.335451 15.273556 18 43 

1st Results 
12 

998 753 6.387716 12.654220 4 8 

2nd Results  3608 1153 3.419405 15.799956 14 41 

1st Results 
13 

1180 1304 5.901219 14.531697 6 15 

2nd Results  3511 1153 3.419405 15.799956 14 41 

1st Results 
14 

1470 1304 5.901219 14.531697 6 15 

2nd Results  3511 1153 3.419405 15.799956 14 41 

1st Results 
15 

1430 1444 3.521069 14.474716 8 17 

2nd Results  3483 1153 3.419405 15.799956 14 41 

1st Results 
16 

1530 1444 3.521069 14.474716 8 17 

2nd Results  3451 1416 3.302804 13.774998 14 31 

1st Results 
17 

1721 1647 2.468834 14.523477 12 23 

2nd Results  3616 1519 2.712197 14.537375 14 34 

1st Results 
18 

1657 1647 2.468834 14.523477 12 23 

2nd Results  3848 1631 2.646642 14.537375 18 55 

1st Results 
19 

1787 1647 2.468834 14.523477 12 23 

2nd Results  3787 1631 2.646642 14.537375 18 55 

1st Results 
20 

2060 1647 2.468834 14.523477 12 23 

2nd Results  3598 1631 2.646442 14.537375 18 55 

1st Results 
21 

2275 2064 1.902202 16.358613 11 22 

2nd Results  3533 1631 2.646642 14.537375 18 55 

1st Results 
22 

2352 2064 1.902202 16.358613 11 22 

2nd Results  3478 1631 2.646642 14.537325 18 55 

1st Results 
23 

2368 2064 1.902202 16.358613 11 22 

2nd Results  3697 1631 2.646642 14.537378 18 55 

1st Results 
24 

2368 2064 1.902202 16.358613 11 22 

2nd Results  3908 1631 2.646642 14.537375 18 55 

1st Results 
25 

2212 2064 1.902202 16.358613 11 22 

2nd Results  3903 1631 2.646642 14.537375 18 55 
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For 25 generations (on the left) and 40 generations (on the 

right), respectively, of heart disease sufferers with ages 

ranging from 0 to 90 years, the GA or the GPLAB algorithm 

was employed to make the heart prediction. The fitness line 

is coloured blue, the number of nodes is yellow (showing the 

ages vs generations), and the red line shows the degree of 

intricacy between the two factors (fitness and nodes). 

According to the data, heart disease affects more people 

between the ages of 10 and 35 in generation 5 than it does in 

generation 15. (less than 10 years old). However, cardiac 

illnesses affect those in generations 20 and 25, who are 40 to 

90 years old. On the other side, as more generations are 

added to the algorithm, the complexity of the algorithm rises, 

making it intuitively predictable that an aging population will 

be more susceptible to heart disease and make it much harder 

to survive infectious diseases like the COVID-19 Pandemic. 

In contrast to generation 40, where the aging population 

declines for ages greater than 40 years and so on, we 

discovered that the findings are similar when we compared 

the top and bottom statistics (Figure 12). 

 

 

Figure 12. Accuracy versus complexity for 100 distinct populations over 25 generations. 
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Figure 13. The GPLAB algorithms for 25 generation (top) and 40 generation (bottom), each with 100 individual population, are intended vs obtained. 

This function was programmed to calculate the 

probabilities between -1 and +1 for generations 25 and 40. 

(Figure 13). We discovered that the better the generation, the 

better the desired obtained algorithm by comparing 

generation from other generations. This provided more 

explanation and demonstrated the Darwinian theory's 

inescapable conclusion. The likelihood of having 

descendants that can perform with greater accuracy and 

performance is higher at generations 24 (top) and 39 (bottom) 

as compared to lower generations for 100 individuals. 

Using 25 and 40 generations, the probability calculation 

was carried out as follows: the light blue line represents the 
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maximum fitness (5.1958 and 3.2896, respectively), the 

green line represents the median (10.5403 and 4.9774, 

respectively), the orange line represents the average (11.979 

and 6.9774, respectively), the negative broken orange line 

represents the average standard deviation (6.2613 and 6.4129, 

respectively), and the positive broken orange line represents 

the average standard deviation (17.6967 and 9.6493, 

respectively) (15.0958 and 17.2177, respectively). When 

measured against test fitness, standard deviation, maximum 

depth, and greatest probability estimation to date, the 

algorithm performs better at generation 40 than it did at 

generation 25. (Figure 14). In contrast, the data are more 

evenly distributed or spread out at a certain point at 25 

generations than they are at 40 generations, where they are 

clustered around the mean (3.1764 and 9.6493). (6.2614 and 

17.6967). 

 

 

Figure 14. Fitness function utilizing 100 individual population members for 25 generations (top) and 40 generations (bottom). 

Using 25 and 40 generations, the probability calculation 

was carried out as follows: the light blue line represents the 

maximum fitness (5.1958 and 3.2896, respectively), the 

green line represents the median (10.5403 and 4.9774, 
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respectively), the orange line represents the average (11.979 

and 6.9774, respectively), the negative broken orange line 

represents the average standard deviation (6.2613 and 6.4129, 

respectively), and the positive broken orange line represents 

the average standard deviation (17.6967 and 9.6493, 

respectively) (15.0958 and 17.2177, respectively). When 

measured against test fitness, standard deviation, maximum 

depth, and greatest probability estimation to date, the 

algorithm performs better at generation 40 than it did at 

generation 25 (Figure 15). In contrast, the data are more 

evenly distributed or spread out at a certain point at 25 

generations than they are at 40 generations, where they are 

clustered around the mean (3.1764 and 9.6493). (6.2614 and 

17.6967). 

 

 

Figure 15. The GA structural complexity when tested for 25 generations (top) and 40 generations (bottom) using 100 individual population. 
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Figure 16. The genetic operators for 25 generations (top) and 40 generations (bottom) using 100 individual population. 

The simulation's findings show that the architecture of the 

GA algorithm becomes more complex the greater the 

generational computation for a certain set of individual 

population. The experiment involved comparing 25 and 40 

generations to mathematical functions represented by different 

coloured lines: the maximum size was plotted by a thick 

orange line, the best size result so far was plotted by a dotted 

orange line with an asterisk, the best result so far for introns 

was plotted by a mauve line, the best depth result so far was 

plotted by a blue line with an asterisk, the average depth was 

plotted by a blue line, and the average tree fill was plotted The 

greatest size complexity at generation 40 is 108, whereas the 

maximum size complexity at generation 25 is 96 (Figure 15). 

The heart disease dataset is used to execute the genetic 

operators in this simulation against 25 and 40 generations. 

The forecasts made at the 40th generation are as follows: The 

thick green line represents the number of reproductions, the 

line in blue with x represents the number of done crossovers 
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(6), and the line in orange with x represents the number of 

done mutation (2). The line in blue indicates the probability 

of crossover (89.2%), the line in orange displays the 

probability of mutation (10.8%), the dotted blue line 

represents the cumulative frequency of crossover (1736), and 

the dotted orange line represents the cumulative frequency of 

mutation (303). This indicates that the majority of offspring 

are produced by crossover at a rate of (85-89%; [0, 1]), 

whilst between (10-14%) suggests the likelihood of how 

many chromosomes should be altered in a single generation 

(Figure 16). The mutation's main goal is to stop the GA from 

converging to local optimum. 

 

 

Figure 17. Population diversity generated by the GA. 

The population diversity displays the population's total 

number of residents. By selecting the population size and 

sensitive diversity under the condition that the population 

search space is small, it is possible to achieve a local 

optimum. However, if the population is very large, the search 

area is expanded and the computational load increases, 
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therefore the population size must be fair (Figure 17). When 

comparing generations 25 and 40, the analysis reveals that 

persons who were more impacted by heart problems at 

generation 40 were also more affected at generation 25 

between the ages of 85 and 95. However, in less than 5 

generations, the population's age diversity decreases from 88 

to 50 to 55 years, as calculated by generation 25 with a 

unique generation of 98 (bottom figure). Similar to this, the 

population variety decreases from a population of 

approximately 95 years to ages between 55 and 60 with a 

unique generation of 92 between 5 and 10 generations and 

less (top figure). 

6. Conclusion and Research 

Contributions 

The fundamental principles of genetic algorithms, their 

architecture, the management evolution of GA enhancement, 

and the evolution of desirable settings have all been 

thoroughly reviewed in relation to their applications to 

healthcare systems. To comprehend its architecture and 

modularization using GA operators, a theoretical and 

mathematical modeling was also presented. In this study, we 

provided a hybrid architecture and used the MATLAB 

programming environment to implement the algorithm. The 

GPLAB algorithm allows us to suggest a method that may 

accurately and adequately forecast heart problems 

(cardiovascular) for a variety of parameters. 

These contributions are made by this paper: 

1) A system that combines GA and ML algorithms in 

order to do symbolic regression and ultimately calculate 

the GPLAB method. Pareto front functionality, 

structural complexity, GP tree functionality, and desired 

achieved functionality, accuracy, and complexity are all 

included in the architecture. 

2) To ascertain which generation performs better than the 

other, tests were conducted on fitness, depth, and the 

number of nodes. 

3) To assess the structural complexity, computational cost, 

and flexibility of ANN-based approaches to PSO and 

ANFIS-algorithms. 

4) A mathematical model to identify the different types of 

GA and how they apply to the healthcare system. 

Abbreviation 

Parkinson Disease (PD), Genetic Algorithms (GA), 

Machine Learning (ML), Receiver Operating Characteristics 

(ROC), Artificial Neural Network (ANN), Major Adverse 

Cardiac Event (MACE), Newtons Raphson (NR), Large for 

Gestational Age (LGA), Appropriate for Gestational Age 

(AGA), Fuzzy Logic with Support Vector Regression 

(FSVR), Backpropagation Neural Network (BNN), A GA-

based on ANN (GANN), Non-Small Cell Lung Cancer 

(NSCLC), Human Immunodeficiency Virus (HIV), Highly 

Active Antiretroviral Therapy (HAART), Particle Swam 

Optimization (PSO), Automate Driver System (ADS), 

Analytical Hierarchy Process (AHP), Simple Inversion 

Mutation Operators (SIM), Real Coded Genetic Algorithms 

(RCGAs), Hybrid Genetic Algorithm and Machine Learning 

Algorithms (HGAMLA), Adaptive Neuro-fuzzy Inference 

System (ANFIS), Genetic Programming Toolbox for 

MATLAB (GPLAB). 
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