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Abstract: Big data has in recent years gained ground in many scientific and engineering problems. It seems to some extent 

prohibitive for traditional matrix decomposition methods (i.e. QR, SVD, EVD, etc.) to handle such large-scale problems 

involving data matrix. Many researchers have developed several algorithms to decompose such big data matrices. An 

accuracy-enhanced randomized singular value decomposition method (referred to as AE-RSVDM) with orthonormalization 

recently becomes the state-of-the-art to factorize large data matrices with satisfactory speed and accuracy. In our paper, low-rank 

matrix approximations based on randomization are studied, with emphasis on accelerating the computational efficiency on large 

data matrices. By this, we accelerate the AE-RSVDM with modified normalized power iteration to result in an accelerated 

version. The accelerated version is grounded on a two-stage scheme. The first stage seeks to find the range of a sketch matrix 

which involves a Gaussian random matrix. A low-dimensional space is then created from the high-dimensional data matrix via 

power iteration. Numerical experiments on matrices of different sizes demonstrate that our accelerated variant achieves speedups 

while attaining the same reconstruction error as the AE-RSVDM with orthonormalization. And with data from Google art project, 

we have made known the computational speed-up of the accelerated variant over the AE-RSVDM algorithm for decomposing 

large data matrices with low-rank form. 

Keywords: Low-rank, Singular Value Decomposition (SVD), Accelerated AE-RSVDM, Orthonormalization, Power Iteration 

 

1. Introduction 

Matrices in many applications appear with a low-rank 

structure and matrix factorization approaches are often 

employed to develop compacted and informative observations 

to make data calculation and interpretation easier. A 

long-established method is the almighty singular value 

decomposition (SVD) which discovers the finest low-rank 

approximation of a data matrix. Various SVD algorithms in 

scientific computing depend on low-rank approximation via 

matrix decomposition of the form 

C    E     F ,
m k k nm n

≈ ×
× ××              (1) 

where min{ , }.k m n�  This illustration permits data analysts to 

analyze or work with the matrix D  using the factor matrices 

E and F  as an alternative of the full matrix, which is more 

efficient both computationally and memory usage. Besides, 

these smaller factor matrices can offer definite structures to 

achieve the desired result by analyzing a data matrix [1]. SVD 

provides a numerically robust matrix factorization which can 

facilitate to calculate the pseudo-inverses of general matrices 

[2], get low-rank approximations [3] and evaluate the 

least-squares and minimum-norm outcomes for a linear model 

[4]. Besides, the SVD is the algorithm behind several machine 

learning concepts, including sparse coding, matrix completion, 

dictionary learning, PCA and robust PCA. For a 
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comprehensive technical outline of SVD, one can refer to the 

work of Trefethen et. al. [5]. 

1.1. Some Applications of Low-rank Approximation 

Many applications in scientific computing encompass 

matrices with low-rank structure. Singular value 

decomposition is employed in the following applications: 

A basic technique in statistics is to calculate directions of 

highest variance in vector-valued data by performing PCA on 

an input matrix [6]. 

Singular value decomposition also plays an essential part in 

tensor decomposition [7]. 

Another on the list of applications includes image 

compression [8]. 

1.2. Early Works of Randomized Algorithm 

Recent algorithms for performing singular value 

decomposition are grounded on Krylov approaches, like 

Lanczos algorithm [9]. These approaches are precise and are 

particularly prevailing for approximating structured, and 

sparse matrices. 

In the last 20 years, random matrix factorization algorithms 

have become more common to measure low-rank matrix 

approximation. Introducing the “Monte Carlo” SVD, a 

strenuous approach was used in the paper of Frieze, Kannan 

and Vempala to competently measure the low-rank SVD based 

on a uniform column sample row [10]. Several works used a 

random projection based on a robust method [11, 12]. 

Specifically, the features of random vectors are dominated so 

that the range of a matrix can be captured effectively. Woolfe 

et al. further improved computational performance by using 

the characteristics of very structured matrices, that allow 

matrix multiplication speed [13]. The significant effort by 

Halko et al. united and extended previous work on randomized 

SVD and presented advanced prototype algorithms to 

calculate low-rank singular value decomposition which is 

closer to the optimum value [3]. The algorithmic work of 

Halko et al. is summarized in algorithm 1 below: 

Algorithm 1: A Prototype Randomized SVD 

Inputs: An m n×  matrix A , a target rank- k , an 

oversampling parameter p  say ( )5,10p=   

Outputs: Matrices ,  ,  U V∑  in an approximate rank- ( )k p+  

SVD of A  (i.e.  and U V are orthonormal and ∑  is 

diagonal) 

Stage A: 

(1) ( ),randn n k pΩ = + ; 

(2) ;Y A= Ω ; 

(3) ( ),~ ,0 ;Q qr Y  =   

Stage B: 

(4) 
*

;B Q A=  

(5) � ( ), , , ' ' ;U V svd B econ ∑ =   

(6) � ;U QU=  

To improve on accuracy, Martinsson introduced the 

“Accuracy-enhanced randomized SVD with 

orthonormalization (AE-RSVDM)” [14] which is displayed in 

algorithm 2.  

Algorithm 2: AE-RSVDM (with orthonormalization)  

Inputs: An m n×  matrix ,A a rank parameter { }min , ,k m n�  

p  is an oversampling parameter ( )5,10p=  and q  is an 

index ( )1,2, .q= K  

Outputs: Two orthonormal matrices  and U V and a diagonal 

matrix ∑  in an approximate rank- ( )k p+  SVD of the input 

matrix A . 

(1) ( ),randn n k pΩ = + ; 

(2) ( ) ;Q orth AG=  

(3) for 1 :j q=  do 

(4) ( )*
;W orth A Q=  

(5) ( ) ;Q orth AW=  

(6) end for 

(7) *
;B Q A=  

(8) � ( ), , , ' ' ;U V svd B econ ∑ =   

(9) � ;U QU=  

1.3. Main Contribution 

Inspired by the work of Martinsson [14], we found it 

attractive to improve upon the speed of the AE-RSVDM (with 

orthonormalization). This manuscript focuses on a 

conceptually workable algorithm for accelerating the 

computational performance of the numerical low-rank 

approximation of singular value decomposition (SVD) via 

random projection. The algorithms presented in this 

manuscript are obtained by a significant disparity on the 

normalized power iteration scheme [15] and are easy to 

implement. We present the so-called “accelerated 

AE-RSVDM with modified normalized power iteration” 

algorithm which is an extension of Martinsson's work. Section 

4 of this work shows several numerical experiments on both 

‘fat’ and ‘thin’ matrices and comparing the performance with 

the AE-RSVDM (with orthonormalization) [14]. With the 

accelerated version of the AE-RSVDM, efficiency is 

improved by the use of LU factorization (with partial pivoting) 

in step 2 of the modified normalized power iteration instead of 

QR decomposition to re-normalize after each step of the first 

q  applications of Y , the sketch matrix. The precision is also 

observed because the reconstruction errors are not 

significantly different. 

1.4. Notation  

Throughout this manuscript, all vectors are measured in n
R  

using their 2l  norm (Euclidean norm), 
2

( )

1

n
u u i

j

= ∑
=

. 

Matrices are denoted with capital letters such as , .A Q  For 

simplicity, we prefer to work with only real matrices in this 

manuscript e.g., m n
A

×∈R , but most of the proofs and 

reasoning works as well for .
m n

A
×∈ C  We measure matrices 

by the Frobenius and the spectral norms defined by  
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( )

1

2 2,
,  and max ,

1, 1

m n
A A i j A AxF

xi j

 
 = =∑   == 

     (2) 

respectively [14]. 

1.5. Orthonormalization 

Given an m × l  matrix B , with m ≥ l , we introduce a 

function 

( ) ,Q orth B=
 

to signify orthonormalization of the columns of B . In other 

words, Q  will be an m × l  orthonormal matrix whose 

columns make a basis for the range of B  [14]. In practice, the 

keyword ‘qr’ means to use a householder transformation to 

perform a QR factorization; e.g., in MATLAB, we would 

write ( ),~ ,0 .Q qr B  =   

2. Preliminaries in Linear Algebra 

2.1. Conceptual Overview of Singular Value Decomposition 

Every real matrix of arbitrary rectangular dimensions can 

be factored into the form 

  ,T

m n m m n nm n
A U V
× × ××

∑≈              (3) 

where  and ,U V  both have orthonormal columns, and whose 

columns hold the left and right singular vectors, respectively. 

The matrix ∑  is diagonal and contains singular values which 

match the singular vectors. By convention, we denote the 
th

i  

singular value as ( )i Aσ , and arrange them and their 

corresponding singular vectors into  and U V  such that 

diag ( ), ( ),1 2A Aσ σ ∑ =  L  and ( ) ( )   .1A A ii iσ σ≥ ∀+  

 

Figure 1. An illustration of the ‘thin’ SVD for a rank- k  with m n≥  [16]. 

2.2. Geometrical Interpretation of SVD 

Let 1n−
S  be the unit sphere in n

R : 

{ }1
: 1

2
n n

x x
− = ∈ =S R                      (4) 

Let 1n
A

−⋅ S  be the image of 1n−
S  under A : 

{ }1
 :  and 1

2
n n

A Ax x x
−⋅ = ∈ =S R             (5) 

Then 1n
A

−⋅ S  is an ellipsoid centered at the origin of n
R , 

with principal axes ui iσ . 

Proof: 

We know that 12x =  and replacing x  with 1
A Ax

− , we 

define y Ax� , then 12x =  becomes  

2

2

2
1 11 ,

2

TA y V U y− −= = ∑                (6) 

Let   and T T
w U y UV w= =

 

22 2
2

1 2

2 2 22
1 2

11
n

n

ww w
w

σ σ σ
−= ∑ = + ++ L              (7) 

We know that 
T

A U V= ∑ . So,  

1

, ,1

a

AV U u un

an

 
 

 = ∑ =   
 
 

L O          (8) 

.
j j j

Av uσ=                             (9) 

Geometrically, U  and V  can be assumed as rotation 

matrices ( )SO m∈  and ( )SO n , and thus we can view the 

matrix-vector multiplication of A  acting on vector x  as:  

Takes the vector n
x ∈ R  and rotates it by T

V .  

Scale each dimension of the result independently via 

multiplication with ∑ . When m n< , ∑  also discards the 

last m n−  dimensions to map to m
x ∈ R ; when m n> , it 

maps it to n
x ∈ R  by zero-padding the new m n−  dimensions. 

Rotates a second time by .U  
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Figure 2. A graphical illustration of the SVD of .
n

A ∈ R  

3. Randomized Algorithm Enhanced 

The basis matrix Q  usually fails to deliver a good 

estimation for the range of the input matrix. The reason being 

that, most real-world data matrices do not have an exact rank-

k , but instead have a range of singular values that gradually 

decay [14]. Efficiency can be significantly improved with the 

concept of over-sampling [3] and power repetition as 

suggested in Martinsson's paper [14]. 

3.1. Oversampling 

Majority of data matrices do not have an exact rank, which 

implies that the singular values { }
1

n

j
j k

σ
= +

 of the unique input 

matrix A  are all non-zero. The sketch matrix Y , therefore, 

does not exactly span the range of the input matrix. This 

problem can be fixed via oversampling by setting k p= +l  

random projections to form the sketch, in place of only k . In 

this discussion, p  refers to the number of extra projections 

and a small number, say { }5,10p=  is normally enough to 

achieve a strong basis similar to the best possible one [3]. 

3.2. The Idea of Power Iteration 

The idea of power sample iterations is another technique for 

enhancing the value of the basis Q . The method outlined in 

algorithm 3 works well for matrices with some kind of decay 

in singular values but they can generate a weak basis for a flat 

singular spectrum or a very big input matrix. The main clue 

about power iteration is for enhancing the exactness of 

random algorithms, which were originally proposed in the 

manuscript of Rokhlin et. al. [15]. To review, presumably, we 

have calculated a rank- k  approach to an m n×  matrix A  

with singular values { } ( )min ,
.

1

m n

j
j

σ
=

 The concept demonstrates 

that the spectral norm error is restricted to a factor that 

measures ( )
1

2 2
j k jσ∑ >  [3] Such quantity can be much larger 

when the singular values decay slowly than the theoretically 

minimal estimated error ( )i.e. 1kσ +  [14]. 

3.3. The Modified Normalized Power Iteration Algorithm 

Martinsson's algorithm tends to be accurate but 

time-wasting to compute the approximated rank- k  SVD. We 

therefore, found it necessary to improve upon speed and also 

maintain the accuracy of the RSVD via the modified 

normalized power iteration. We therefore, introduce the 

modified normalized power iteration algorithm. 

Algorithm 3: Modified Normalized Power Iteration 

Inputs: An input matrix m n
A

×∈R and the sketch matrix 

.
m

Y
×∈ l

R  

Outputs: An orthonormal matrix m
Y

×∈ l
R  

(1) for 1 :j q=  do 

(2) [ ] ( ),~ ;L lu Y=  2
( )O qml  

(3) ( ),~ ;TQ qr A L  =   2
( )O qmn qm+l l  

(4) ( ) ;Y orth AQ=  2
( )O qmn qn+l l  

(5) end for 

3.4. The Accelerated AE-RSVDM Algorithm 

The prototype randomized scheme [3] gives accurate 

results for matrices which rapidly decay with respect to its 

singular value but tends to produce sub-optimal results when 

they do not [14]. We therefore, introduce the accelerated 

AE-RSVDM with modified normalized power iteration 

algorithm. We give a quick overview of the accelerated variant 

algorithm. As usual, the two-stage scheme was used: 

Stage A-The range finder: For us to obtain a low-rank SVD 

approximation of m n
A

×∈R  with target rank- k , where 

min{ , }k m n�  and m n≥ , we require a random test matrix 

n×Ω ∈ l
R , where k p= +l . By this, p  denotes a parameter 

for oversampling, and we will see that a small amount of 

oversampling is often sufficient in practice. 

The definition of a random projection is widely used to 

sample the range of the data matrix A  to construct such an 

orthogonal projection scheme efficiently. Random projections 

are orthodox data and generated from the standard normal 

distribution, for example, by initially drawing a set of k  

random vectors { }
1

k
i i

ω = . Random vectors remain linearly 

independent with high probability; the theory of probability 

ensures this. The mapping of A  to low-dimensional space 

then calculates a number of random { }
1

k
yi i=  projections 

      1, 2, , .y A for i ki iω= = L        (10) 

Equation (10) can be efficiently executed in parallel. 

Therefore, let us generate the random test matrix n×Ω ∈ l
R , 

which is indeed generated from the standard normal 

distribution, whose columns are the vectors { }
1

k
i i

ω = . The 

sketch matrix m
Y

×∈ l
R , is then acquired by the random test 

matrix after the input matrix has been multiplied 

: .Y A= Ω                     (11) 

Once Y  is found, it only remains to use the modified 

normalized power iteration in algorithm 3 to renormalize and 

orthonormalize the sketch (sample) matrix to update the 

sketch matrix such that m
Y

×∈ l
R . 

Stage B–Computation of smaller matrix: After 
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orthonormalizing the columns of Y , we construct an 

orthonormal basis 
m

Q
×∈ l

R  to span the columns of m
Y

×∈ l
R . 

We now aim to find a smaller matrix n
B

×∈ l
R . This means we 

are therefore constructing a low-dimensional space from a 

high-dimensional data matrix such that 

: .
T

B Q A=                   (12) 

We now compute the SVD of the smaller matrix B  to 

obtain two orthonormal matrices � ,U
×∈ l l

R  
n n

V
×∈R  and a 

diagonal matrix 
n×

∑∈ l
R  as shown 

� ( ), , .U V svd B ∑ =              (13) 

The left singular vectors are then updated by multiplying 

the orthonormal basis Q  and the truncated matrix �U  

�.U QU=                   (14) 

Algorithm 4: Accelerated AE-RSVDM with Modified 

Normalized Power Iteration  

Inputs: An m n×  matrix ,A a rank parameter { }min , ,k m n�  

p  is an oversampling parameter ( )5,10p=  and q  is an 

index ( )1,2,q= K . 

Outputs: Two orthonormal matrices  and U V and a diagonal 

matrix ∑  in an approximate rank- ( )k p+  SVD of the input 

matrix A . 

(1) ;k p= +l  

(2) ( ), ;randn nΩ = l  

(3) ;Y A= Ω  ( )O mnl  

(4) Power iteration. alg. 3; 
2 2

(2 2 )O qm qmn qn+ +l l l  

(5) ( ),~ , 0 ;Q qr Y  =   
2

( )O ml  

(6) ;
T

B Q A=  ( )O mnl  

(7) � ( ), , , ' ' ;U V svd B econ ∑ =   

(8) � ;U QU=  

Efficiency is enhanced by the use of LU factorization (with 

partial pivoting) in step 2 of algorithm 3 instead of QR 

decomposition to re-normalize after each step of the first q  

applications of ,Y  the sketch matrix. This normalization 

ensures speedup and maintains accuracy as compared to the 

AE-RSVDM (with orthonormalization) as proposed by 

Martinsson [14]. This is summarized in algorithm 3. 

3.5. Analysis of Computational Complexity 

We analyze the significance of each step to contextualize the 

computational complexity of both the accelerated AE-RSVDM 

with modified normalized power iteration and the AE- RSVDM 

(with orthonormalization) in floating-point operation. The 

computational complexities are summarized in Table 1. To sum 

it up, both algorithms are dominated by the complexity ( ) .O mnl  

Table 1. Computational Complexities of the Two Algorithms. 

Scheme Computational Complexities 

AE-RSVDM (with orthonormalization) ( ) ( ) 2
2 2 1 2C q mn C q mmm qr+ + +l l  

Accelerated AE-RSVDM with modified normalized power iteration ( ) ( ) 2 22
2 2C q mn m C qm qn m C qmmm qr lu

 + + + + + +  
l l l l  

 

3.6. Theoretical Error Bound of the Accelerated 

AE-RSVDM with Modified Normalized Power Iteration 

To state the theorem of the error bound of algorithm 4, we 

make reference to two most important propositions about 

random measurement matrix [17-19]. 

Proposition 1: Let G  be a Gaussian matrix. Then  

1

22
SGT S TF FF

   ≤    
E

             (15) 

and  

SGT S T S T
F F

   ≤ +    
E E              (16) 

Proposition 2: Let G  be a Gaussian matrix of size k k p× + , 

2p ≥ . Then 

†

1

2 2   and  
1

k
SGT

F p

e k p
G

p


   ≤   −  


+  ≤
 

        (17) 

Theorem 1: Let m n
A

×∈R  with singular values 

{ } ( )min ,

1

m n
j

j
σ

=
, { }min ,k m n�  is the target rank, let q  denote a 

small positive integer (for the power iteration) and we set 

2p ≥  to be an oversampling parameter. Letting ,k p= +l  

draw a random Gaussian test matrix Ω  of size n × l , set 

( ) .
q

T
Y AA A= Ω  Setting ,

m
Q

×∈ l
R  the orthonormal matrix as 

a result of orthonormalizing the columns of Y . Then 

1
1 2 1

min{ , } 22 1 2(2 1)
.

11 1

q
m nk eq qTA QQ A jkp p j k

σ σ

  +
    + +  − ≤ + ∑  +  −  = +  
 

l
E

 (18) 

Here, the operator E  refers to the expectation in relation to 

the Gaussian measurement matrix Ω , and e is known to be 

Euler's number. Furthermore, p  the over-sampling parameter is 

presumed to be larger than or equal to 2. From the error bound in 

(18), it follows that the approximation error can be controlled 

both by the over-sampling parameter, p  and the power iteration 

scheme parameter, q . The power iteration scheme parameter q  

speeds up the decay rate in the singular values of the sampled 

matrix by keeping the same eigenvectors [14]. 
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Proof:  
We proceed with the proof. Partition the SVD of A  as 

follows: 

1
.1

2 2

Tk n k V k
A U

T n kV

  −
  ∑=    −   ∑   

              (19) 

1
T

V k n∈ ×  and ( )n k pΩ ∈ × + , let 
 1 1

T
VΩ = Ω . Therefore, 

( )1 k k pΩ ∈ × + , ( )2
T

V n k n∈ − × , let 
 2 2

T
VΩ = Ω . This implies that 

( ) ( )2 n k k pΩ ∈ − × +  

11

2
2

TV

TV

 Ω Ω  =   Ω   Ω  

.                  (20) 

From theorem (2.9.1) of [3], assuming 1Ω  is not singular, it 

holds that  

2
2 †

.2 2 2 1
T

A QQ A− ≤ ∑ + ∑ Ω Ω         (21) 

Here, ⋅  represents either the 
2

l -operator norm, or the 

Frobenius norm. Because Ω  is obtained from a Gaussian 

distribution, the matrices 1Ω  and 2Ω  also exhibits the 

features of a Gaussian distribution. As a consequence, the 

matrices U  and V  are not involved in the analysis and we 

can simply assume that A  is diagonal, ( )diag , ,1 2A σ σ= L . 

If 0p = , then †
1

Ω  is typically large, and very unstable [3]. 

First observe that the expectation of the third term of (21) and 

making use of proposition 1, 

† † †
2 2 2 21 1 1

  
∑ Ω Ω ≤ ∑ Ω + ∑ Ω  

    
F

F
        (22) 

{ }
1

2† †
.2 21 1

 
≤ ≤ ∑ Ω + ∑ Ω  

 
H lder

F
F

ö         (23) 

Proposition 2 now provides bounds for 
2

†
1 F

ΩE  and †
1

ΩE  

so we obtain 

†
2 2 2 21 1

e k pk
Fpp

+ 
∑ Ω Ω ≤ ∑ + ∑  − 

E       (24) 

1

2 1
1

min{ , } 22 1 2(2 1)
.

11 1

q

m nk eq q
jkp p j k

σ σ

+
 
  + +  = + ∑+  − = +  
 

l   (25) 

4. Numerical Experiments 

In this section, we include numerical instances to 

demonstrate the computational efficiency of the accelerated 

AE-RSVDM with modified normalized power iteration 

scheme and to compare its efficiency with the AE-RSVDM 

with orthonormalization found in the manuscript of 

Martinsson [14]. Both algorithms are executed in MATLAB 

R2018a software. All computations were done on a machine 

with the following specifications: A desktop computer with a 

4-core (8 logical processors) Intel Core i7-7700 CPU 

(3.60GHz), and 32GB DDR4 RAM. The relative 

reconstruction error is calculated using the Frobenius norm as 

,
M Mk F

M
F

−
                      (26) 

where k  is the target rank and Mk  is the approximated 

matrix. The spectral norm was also used. 

4.1. Comparison of Execution Speed 

We compare the run time and the reconstruction errors of 

the accelerated variant to that of the AE-RSVDM with 

orthonormalization. A synthetic ‘thin’ matrix whose singular 

values do not decay easily of size 10000 8500×  was used to test 

the efficiency of the two algorithms. We controlled the 

efficiency of the algorithms with varying q . A target rank 

3000=l  was used. The results are shown in Table 2. Figure 3 

also shows the rate of decay of the singular values of both the 

10000 8500×  and the 2048 4096× synthetic matrices. 

 

Figure 3. Decay of singular values of two distinct synthetic matrices of different sizes. 
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Table 2. Computational results for a 10000 8500×  ‘thin’ synthetic matrix, 3000.=l  

Scheme q  Time (s) Error (%) 

AE-RSVDM (with orthonormalization) 1 60.02 21.6159 

Accelerated AE-RSVDM with modified normalized power iteration 1 41.40 21.6163 

AE-RSVDM (with orthonormalization) 2 86.23 20.3272 

Accelerated AE-RSVDM with modified normalized power iteration 2 61.72 20.3262 

AE-RSVDM (with orthonormalization) 3 112.71 19.9933 

Accelerated AE-RSVDM with modified normalized power iteration 3 84.36 19.9934 

Figure 4 shows the graphical representation of the run times and relative reconstruction errors of both algorithms on the 

10000 8500× synthetic matrix. 

 

(a) Runtime and errors of the two RSVD in Frobenius norm 

 

(b) Runtime and errors of the two RSVD in spectral norm 

Figure 4. Runtime and relative approximate errors of both RSVDs on the 10000 8500×  matrix (measured in Frobenius and spectral norms). 

From Table 2 and Table 3, the accelerated AE-RSVDM 

with modified normalized power iteration achieves speed-ups 

over the AE-RSVDM (with orthonormalization) over 

different ,q while attaining nearly the same reconstruction 

errors on both matrices used in the numerical computations. 

Refer to Figure 4 and Figure 5. 

 

(a) Runtime and errors of the two RSVD in Frobenius norm 
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(b) Runtime and errors of the two RSVD in spectral norm 

Figure 5. Runtime and relative approximate errors of both RSVDs on the 2048 4096×  matrix (measured in Frobenius and spectral norms). 

Table 3. Computational results for a 2048 4096×  ‘fat’ synthetic matrix, whose singular values decay rapidly, 600.=l  

Scheme q  Time (s) Error (%) 

AE-RSVDM (with orthonormalization) 1 0.76 35.2937 

Accelerated AE-RSVDM with modified normalized power iteration 1 0.68 35.2727 

AE-RSVDM (with orthonormalization) 2 1.05 31.1577 

Accelerated AE-RSVDM with modified normalized power iteration 2 0.93 35.2820 

AE-RSVDM (with orthonormalization) 3 1.46 29.1836 

Accelerated AE-RSVDM with modified normalized power iteration 3 1.25 29.0803 

 

4.2. Image Compression 

SVD is a common method for image compression. An 

image can be regenerated from a subset of the principal 

singular values and singular vectors. We use Benvenuto Tisi's 

well-known painting “Garofalo Annunciation” which was 

obtained from the Google Art Project. This image has a high 

resolution of 30000 22882.×  We seek to compute the low-rank 

approximation of this high-resolution image via the two 

randomized algorithms to ascertain the time each algorithm 

takes. 

To begin, we reduced the resolution to 5120 3072×  pixels in 

order for the computer to bear the computational load. We 

seek to show the reconstruction of the data image with 

different .k p= +l  Figure 6 depicts the original input of the 

“Garofalo Annunciation” image. 

Table 4. Computational results for a 5120 3072×  image of the ‘Garofalo Annunciation’ with different .l  

Scheme l Time (s) Error (%) 

AE-RSVDM (with orthonormalization) 20 0.15 16.97 

Accelerated AE-RSVDM  20 0.05 16.53 

AE-RSVDM (with orthonormalization) 100 0.39 9.83 

Accelerated AE-RSVDM  100 0.23 9.41 

AE-RSVDM (with orthonormalization) 1000 3.54 3.45 

Accelerated AE-RSVDM  1000 2.84 3.45 

 

Figure 6. A 5120 3072×  scaled image of the “Garofalo Annunciation” painted by Benvenuto Tisi. 
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Figure 7. Reconstructed low-rank images with different rank- .l  

5. Conclusion 

Reduced dimensionality and the associated theory of 

low-rank matrix approximations are crucial algorithmic 

techniques in many fields of study. Big data are, however, 

increasingly difficult to compute in classical matrix algorithms. 

The randomized SVD is undoubtedly the greatest influential 

and ubiquitous method for randomized algorithms. This work 

has examined both the runtime and the relative reconstruction 

errors of the accelerated AE-RSVDM with modified 

normalized power iteration against the AE-RSVDM (with 

orthonormalization) as formulated by [15]. Inspired by 

randomization, the computation of the approximate low-rank 

SVD of a big data matrix from a small compressed matrix is 

based on an efficient two-pass algorithm. The results show that 

the accelerated AE-RSVDM variant achieves a faster runtime 

than the AE-RSVDM (with orthonormalization) but does not 

achieve any significant reconstruction errors. Future research 

focuses on improving on the relative approximate error as well 

as implementing the accelerated variant in facial recognition. 
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